Полная механическая энергия системы сохраняется. Закон сохранения и превращение энергии. Формулировка и определение закона сохранения и превращения энергии

Данный видеоурок предназначен для самостоятельного ознакомления с темой «Закон сохранения механической энергии». Вначале дадим определение полной энергии и замкнутой системы. Затем сформулируем Закон сохранения механической энергии и рассмотрим, в каких областях физики можно его применять. Также мы дадим определение работы и научимся её определять, рассмотрев связанные с ней формулы.

Тема: Механические колебания и волны. Звук

Урок 32. Закон сохранения механической энергии

Ерюткин Евгений Сергеевич

Темой урока является один из фундаментальных законов природы – .

Мы ранее говорили о потенциальной и кинетической энергии, а также о том, что тело может обладать вместе и потенциальной, и кинетической энергией. Прежде чем говорить о законе сохранения механической энергии вспомним, что такое полная энергия. Полной энергией называют сумму потенциальной и кинетической энергий тела. Давайте вспомним, что называют замкнутой системой. Это такая система, в которой находится строго определенное количество взаимодействующих между собой тел, но никакие другие тела извне на эту систему не действуют.

Когда мы определились с понятием полной энергии и замкнутой системы можно говорить о законе сохранения механической энергии. Итак, полная механическая энергия в замкнутой системе тел взаимодействующих друг с другом посредством сил тяготения или сил упругости остается неизменной при любом движении этих тел.

Рассмотреть сохранение энергии удобно на примере свободного падения тела с некоторой высоты. Если некоторое тело находится в состоянии покоя на некоторой высоте относительно Земли, то это тело обладает потенциальной энергией. Как только тело начинает свое движение, высота тела уменьшается, уменьшается и потенциальная энергия. При этом начинает нарастать скорость, появляется энергия кинетическая. Когда тело приблизилось к Земле, то высота тела равна 0, потенциальная энергия тоже равна 0, а максимальной будет являться кинетическая энергия тела. Вот здесь и просматривается превращение потенциальной энергии в кинетическую. То же самое можно сказать о движении тела наоборот, снизу вверх, когда тело бросают вертикально вверх.

Конечно, нужно отметить, что данный пример мы рассмотрели с учетом отсутствия сил трения, которые в реальности действуют в любой системе. Обратимся к формулам и посмотрим, как записывается закон сохранения механической энергии: .

Представьте себе, что тело в некоторой системе отсчета обладает кинетической энергией и потенциальной энергией. Если система замкнутая, то при каком-либо изменении произошло перераспределение, превращение одного вида энергии в другой, но полная энергия остается по своему значению той же самой. Представьте себе ситуацию, когда по горизонтальной дороге движется автомобиль. Водитель выключает мотор и продолжает движение уже с выключенным мотором. Что в этом случае происходит? В данном случае автомобиль обладает кинетической энергией. Но вы прекрасно знаете, что с течением времени автомобиль остановится. Куда девалась в этом случае энергия? Ведь потенциальная энергия тела в данном случае тоже не изменилась, она была какой-то постоянной величиной относительно Земли. Как произошло изменение энергии? В данном случае энергия пошла на преодоление сил трения. Если в системе встречается трение, то оно также влияет на энергию этой системы. Давайте посмотрим, как записывается в данном случае изменение энергии.

Изменяется энергия, и это изменение энергии определяется работой против силы трения. Определить работу мы можем с помощью формулы, которая известна из 7 класса: А = F.* S.

Итак, когда мы говорим об энергии и работе, то должны понимать, что каждый раз мы должны учитывать и то, что часть энергии расходуется на преодоление сил трения. Совершается работа по преодолению сил трения.

В заключение урока хотелось бы сказать, что работа и энергия по сути своей связанные величины через действующие силы.

Дополнительная задача 1 «О падении тела с некоторой высоты»

Задача 1

Тело находится на высоте 5 м от поверхности земли и начинает свободно падать. Определите скорость тела в момент соприкосновения с землей.

Дано: Решение :

Н = 5 м 1. ЕП = m* g*.H

V0 = 0 ; m * g * H =

_______ V2 = 2gH

VK - ? Ответ:

Рассмотрим закон сохранения энергии.

Рис. 1. Движение тела (задача 1)

В верхней точке тело обладает только потенциальной энергией: ЕП = m *g * H. Когда тело приблизится к земле, то высота тела над землей будет равна 0, а это означает, что потенциальная энергия у тела исчезла, она превратилась в кинетическую.

Согласно закону сохранения энергии можем записать: m * g * H = . Масса тела сокращается. Преобразуя указанное уравнение, получаем: V2 = 2gH .

Окончательный ответ будет: . Если подставить все значение, то получим: .

Дополнительная задача 2

Тело свободно падает с высоты Н. Определите, на какой высоте кинетическая энергия равна трети потенциальной.

Дано: Решение :

Н ЕП = m . g . H; ;

M.g.h = m.g.h + m.g.h

h - ? Ответ: h = H.

Рис. 2. К задаче 2

Когда тело находится на высоте Н, оно обладает потенциальной энергией, и только потенциальной. Эта энергия определяется формулой: ЕП = m * g * H. Это и будет полная энергия тела.

Когда тело начинает двигаться вниз, уменьшается потенциальная энергия, но вместе с тем нарастает кинетическая. На высоте, которую нужно определить, у тела уже будет некоторая скорость V. Для точки, соответствующей высоте h, кинетическая энергия имеет вид: . Потенциальная энергия на этой высоте будет обозначена следующим образом: .

По закону сохранения энергии у нас полная энергия сохраняется. Эта энергия ЕП = m * g * H остается величиной постоянной. Для точки h мы можем записать следующее соотношение: (по З.С.Э.).

Вспоминая, что кинетическая энергия по условию задачи составляет , можем записать следующее: m.g.Н = m.g.h + m.g.h.

Обратите внимание, масса сокращается, ускорение свободного падения сокращается, после несложных преобразований мы получаем, что высота, на которой такое соотношение выполняется, составляет h = H.

Ответ: h= 0,75H

Дополнительная задача 3

Два тела – брусок массой m1 и пластилиновый шарик массой m2 – движутся навстречу друг другу с одинаковыми скоростями. После столкновения пластилиновый шарик прилип к бруску, два тела продолжают движение вместе. Определить, какое количество энергии превратилось во внутреннюю энергию этих тел, с учетом того что масса бруска в 3 раза больше массы пластилинового шарика.

Дано: Решение :

m1 = 3. m2 m1.V1- m2.V2= (m1+m2).U; 3.m2V- m2.V= 4 m2.U2.V=4.U; .

Это означает, что скорость бруска и пластилинового шарика вместе будет в 2 раза меньше, чем скорость до соударения.

Следующий шаг – это .

.

В данном случае полная энергия – это сумма кинетических энергий двух тел. Тел, которые еще не соприкоснулись, не ударились. Что произошло потом, после соударения? Посмотрите на следующую запись: .

В левой части мы оставляем полную энергию, а в правой части мы должны записать кинетическую энергию тел после взаимодействия и учесть, что часть механической энергии превратилась в тепло Q .

Таким образом, имеем: . В итоге получаем ответ .

Обратите внимание: в результате такого взаимодействия большая часть энергии превращается в тепло, т.е. переходит во внутреннюю энергию.

Список дополнительной литературы:

А так ли хорошо знакомы вам законы сохранения? // Квант. - 1987. - № 5. - С. 32-33.
Городецкий Е.Е. Закон сохранения энергии // Квант. - 1988. - № 5. - С. 45-47.
Соловейчик И.А. Физика. Механика. Пособие для абитуриентов и старшеклассников. – СПб.: Агенство ИГРЕК, 1995. – С. 119-145.
Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – C. 309-347.

Закон сохранения механической энергии связывает между собой разные виды энергии, рассмотрим их подробнее. Выясним и возможности его практического применения.

Особенности физической системы

Математическая формулировка закона сохранения механической энергии связывает кинетическую и потенциальную энергию.

Суть закона заключается в том, что допускается превращение одной формы в иной вид, при этом суммарное значение остается неизменной величиной. В разных разделах физики есть свои формулировки данного закона. Например, в термодинамике выделяют первое начало, в классической механике используют закон сохранения, а в электродинамике расчеты проводят на основе теоремы Пойнтинга.

Фундаментальный смысл

Как определяется механическая энергия? Закон сохранения механической энергии объясняют теоремой Нетер. Она объясняет независимость закона относительно временных рамок, иных основополагающих принципов механики. Ньютоновская теория характеризуется использованием частного случая закона сохранения энергии.

Как можно качественно описать данный закон? Сумма потенциальной и кинетической форм в замкнутой системе сохраняется неизменной.

Если на систему не действуют иные силы, в таком случае не наблюдается ее исчезновения, а также появления. Как осуществлялось обоснование закона сохранения механической энергии? Лабораторная деятельность многих ученых основывалась на изучении перехода кинетической энергии в потенциальный вид. Например, при анализе состояния математического маятника удалось подтвердить неизменность суммарного значения двух видов.

Основы термодинамики

Как рассчитывается механическая энергия? Закон сохранения механической энергии можно применить к первому началу термодинамики. Рассматривается изменение внутренней энергии системы в процессе ее перехода из одного состояния в иное через сумму количества теплоты, передаваемого системе, и работы внешних сил.

Закон сохранения импульса и механической энергии поясняет сложность получения двигателя, работающего постоянно.

Изучение свойств жидкостей

Для гидродинамики идеальных жидкостей было выведено уравнение Бернулли. Суть его в постоянстве жидкости, имеющей однородную плотность.

Как изучалась механическая энергия? Закон сохранения механической энергии был определен экспериментальным путем. Гей-Люссак в начале 19 века пытался найти зависимость между расширением газа и его теплоемкостью. Ему удалось установить неизменность температуры в рассматриваемом процессе.

История появления закона

В 19 веке, после опытов М. Фарадея, была выявлена зависимость между разными видами материи. Именно эти исследования стали основой для появления закона сохранения. Что такое полная механическая энергия? Закон сохранения энергии назван результатом опытов, проведенных французским физиком Сади Карно. Он пытался экспериментальным путем определить зависимость между работой, совершенной над системой, и выделяющимся количеством теплоты.

Именно Карно удалось установить зависимость между теплом и работой, то есть сформулировать первое начало термодинамики на основе закона сохранения. Джеймс Прескотт Джоуль провел серию классических опытов, направленных на количественное определение теплоты, выделяющейся при вращении в электромагнитном поле соленоида с металлическим сердечником.

Ему удалось установить, что количество теплоты, выделяемой в экспериментах, прямо пропорционально значению тока, взятому в квадрате. В последующих экспериментах Джоуль поменял катушку на груз, падающий с некоторой высоты. Ученому удалось установить зависимость между величиной выделяемого тепла и математическим показателем энергии груза.

Роберт Майер предложил интересную гипотезу универсального применения закона сохранения энергии. Занимаясь изучением функционирования систем человека, немецкий врач решил проанализировать то количество теплоты, которое организм выделяет по мере переработки пищи. Его интересовала величина работы, совершаемой в этом случае. Майеру удалось установить связь между теплом, работой, подтверждающую возможность использования закона сохранения энергии для процессов, происходящих внутри организма человека.

Герман Гельмгольц дал первую характеристику потенциальной энергии, основываясь на исследованиях Джоуля и Майера. Он в своих рассуждениях базировался на связи кинетической (живой) энергии с силами напряжения (потенциальной энергии).

Заключение

Закон, поясняющий неизменность суммарного показателя нескольких видов энергии, присущих для рассматриваемой системы, сохраняет свою актуальность и в настоящее время. Открытие закона способствовало развитию физических наук, стало отправной точкой для инновационных процессов, рассматриваемых в науке и технике. Именно изучение закона сохранения механической энергии, лабораторная практика стали детальным обоснованием единства живой природы.

Он указывает на закономерность перехода одной формы в другую, раскрывает глубину внутренних связей между формами материи. Любое явление, происходящее в живой и неживой природе, легко можно объяснить с помощью данного закона. В школьной программе уделяется особое внимание выводу математической записи связи между разными видами движения, рассматриваются основы термодинамической системы. На едином государственном экзамене по физике предлагаются задачи, предполагающие использование данного соотношения.

Процессы, которые происходят в Солнечной системе, связанные с изменением положения тел за определенный промежуток времени, могут быть объяснены с точки зрения основных физических правил. Переход из кинетической в потенциальную форму актуален при изучении механического движения тел. Зная, что суммарный показатель будет постоянным, можно проводить математические вычисления.

Полной механической энергией системы тел называется сумма кинетической и потенциальной энергий:

Изменение кинетической энергии системы равно суммарной работе всех сил, действующих на тела этой системы:

∆Eк = Aпот + Aнепот + Aвнеш (1)

Изменение потенциальной энергии системы равно работе потенциальных сил с обратным знаком:

∆Eп = - Aпот (2)

Очевидно, что изменение полной механической энергии равно:

∆E = ∆Eп + ∆Eк (3)

Из уравнений (1-3) получим, что изменение полной механической энергии равно суммарной работе всех внешних сил и внутренних не потенциальных сил.

∆Eк = Aвнеш + Aнепот (4)

Формула (4) представляет из себя закон изменения полной механической энергии системы тел.

В чем состоит закон сохранения механической энергии ? Закон сохранения механической энергии состоит в том, что полная механическая энергия замкнутой системы остается неизменной.


4) Вращательное движение. Момент импульса. Тензор инерции. Кинетическая энергия и момент импульса твёрдого тела. Теоремы Кёнига и Штейнера-Гюйгенса.

Вращательное движение.

Вращательное движение - вид механического движения. При вращательном движении абсолютно твёрдого тела его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной, так и неподвижной.

При равномерном вращении (T оборотов в секунду),

§ Частота вращения - число оборотов тела в единицу времени.

,

§ Период вращения - время одного полного оборота. Период вращения T и его частота связаны соотношением .

§ Линейная скорость точки, находящейся на расстоянии R от оси вращения

§ Угловая скорость вращения тела

.

§ Кинетическая энергия вращательного движения

где I z - момент инерции тела относительно оси вращения. - угловая скорость

Момент импульса.

Момент импульса характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Следует учесть, что вращение здесь понимается в широком смысле, не только как регулярное вращение вокруг оси. Например, даже при прямолинейном движении тела мимо произвольной воображаемой точки, не лежащей на линии движения, оно также обладает моментом импульса. Наибольшую, пожалуй, роль момент импульса играет при описании собственно вращательного движения.

Момент импульса замкнутой системы сохраняется.

Момент импульса частицы относительно некоторого начала отсчёта определяется векторным произведением её радиус-вектора и импульса:

где - радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчёта начала отсчёта, - импульс частицы.

Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется (закон сохранения момента импульса):

Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело:

Тензор инерции.

Тензор инерции - в механике абсолютно твёрдого тела - тензорная величина, связывающая момент импульса тела и кинетическую энергию его вращения с его угловой скоростью:

где - тензор инерции, - угловая скорость, - момент импульса

Кинетическая энергия.

Кинетическая энергия - энергия механической системы, зависящая от скоростей движения её точек. Единица измерения в системе СИ - Джоуль. Кинетическая энергия есть разность между полной энергией системы и её энергией покоя. Часто выделяют кинетическую энергию поступательного и вращательного движения.

Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения:

где: - масса тела, - скорость центра масс тела, - момент инерции тела, - угловая скорость тела.

Теорема Кёнига.

Теорема Кёнига позволяет выразить полную кинетическую энергию системы через энергию движения центра масс и энергию движения относительно центра масс.

Кинетическая энергия системы есть энергия движения центра масс плюс энергия движения относительно центра масс:

,

где - полная кинетическая энергия, - энергия движения центра масс, - относительная кинетическая энергия.

Иными словами, полная кинетическая энергия тела или системы тел в сложном движении равна сумме энергии системы в поступательном движении и энергии системы во вращательном движении относительно центра масс.

Теорема Штейнера-Гюйгенса.

Теорема Гюйгенса-Штейнера: момент инерции тела относительно произвольной оси равен сумме момента инерции этого тела относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями:

Где - известный момент инерции относительно оси, проходящей через центр масс тела, - искомый момент инерции относительно параллельной оси, - масса тела, - расстояние между указанными осями.


5) Система двух частиц. Приведённая масса. Центральное поле. Законы Кеплера.

Приведённая масса.

Приведённая масса - условная характеристика распределения масс в движущейся механической системе, зависящая от физических параметров системы (масс, моментов инерции, и др.) и от её закона движения.

Обычно приведенная масса определяется из равенства , где - кинетическая энергия системы, а - скорость той точки системы, к которой приводится масса. В более общем виде приведённая масса является коэффициентом инерции в выражении кинетической энергии системы со стационарными связями, положение которой определяется обобщёнными координатами

где точка означает дифференцирование по времени, а есть функции обобщённых координат.

Система двух частиц.

Задача двух тел состоит в том, чтобы определить движение двух точечных частиц, которые взаимодействуют только друг с другом. Распространённые примеры включают спутник, обращающийся вокруг планеты, планета, обращающаяся вокруг звезды.

Задачу двух тел можно представить как две независимых задачи одного тела, которые привлекают решение для движения одной частицы во внешнем потенциале. Так как многие задачи с одним телом могут быть решены точно, соответствующая задача с двумя телами также может быть решена. В отличие от этого, задача с тремя телами (и, более широко, задача n тел) не может быть решена, кроме специальных случаев.

В задаче двух тел, возникающей, например, в небесной механике или теории рассеяния, приведённая масса появляется как некая эффективная масса, когда задачу двух тел сводят к двум задачам об одном теле. Рассмотрим два тела: одно с массой и другое с массой . В эквивалентной проблеме одного тела рассматривают движение тела с приведённой массой, равной

где сила, действующая на эту массу, дается силой, действующей между этими двумя телами. Видно, что приведённая масса равна половине среднего гармонического двух масс.

Центральное поле.

Сведя задачу о движении двух тел к задаче о движении одного тела, мы пришли к вопросу об определении движения частицы во внешнем поле, в котором ее потенциальная энергия зависит только от расстояния до определенной неподвижной точки; такое поле называют центральным. Сила

действующая на частицу, по абсолютной величине зависит при этом тоже только от и направлена в каждой точке вдоль радиус-вектора.

При движении в центральном поле сохраняется момент системы относительно центра поля. Для одной частицы это есть

Законы Кеплера.

Законы Кеплера - три эмпирических соотношения. Описывают идеализированную гелиоцентрическую орбиту планеты. В рамках классической механики выводятся из решения задачи двух тел предельным переходом / → 0, где , - массы планеты и Солнца.

1. Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.

2. Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади.

3. Квадраты периодов обращения планет вокруг Солнца относятся, как кубы больших полуосей орбит планет. Справедливо не только для планет, но и для их спутников.


6) Функция Лагранжа. Уравнения Лагранжа. Обобщённые импульсы, энергия. Циклические координаты. Фукнция Гамильтона и уравнения Гамильтона.

Функция Лагранжа.


7) Гармонические колебания. Амплитуда. Частота. Пружинный маятник, математический маятник, физический маятник.

Гармонические колебания.

Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

где х - значение изменяющейся величины, t - время, остальные параметры - постоянные: А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде

(Любое нетривиальное решение этого дифференциального уравнения - есть гармоническое колебание с циклической частотой )

§ Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Чтобы свободные колебания были гармоническими, необходимо, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), и в ней отсутствовала диссипация энергии (последняя вызвала бы затухание).

§ Вынужденные колебания совершаются под воздействием внешней периодической силы. Чтобы они были гармоническими, достаточно чтобы колебательная система была линейной (описывалась линейными уравнениями движения), а внешняя сила сама менялась со временем как гармоническое колебание (то есть чтобы зависимость от времени этой силы была синусоидальной).

Амплитуда.

Амплитуда - максимальное значение смещения или изменения переменной величины от среднего значения при колебательном или волновом движении. Неотрицательная скалярная величина, размерность которой совпадает с размерностью определяемой физической величины.

Иначе: Амплитуда - модуль максимального отклонения тела от положения равновесия. Например:

§ амплитуда для механического колебания тела (вибрация), для волн на струне или пружине - это расстояние и записывается в единицах длины.

Частота.

Частота - физическая величина, характеристика периодического процесса, равная числу полных циклов процесса, совершённых за единицу времени. Стандартные обозначения в формулах - , , или . Единицей частоты в СИ в общем случае является Гц. Величина, обратная частоте, называется периодом.

В природе известны периодические процессы с частотами от ~10 −16 Гц (частота обращения Солнца вокруг центра Галактики) до ~10 35 Гц (частота колебаний поля, характерная для наиболее высокоэнергичных космических лучей).

Пружинный маятник.

Пружинный маятник - механическая система, состоящая из пружины с коэффициентом упругости (жёсткостью) k (закон Гука), один конец которой жёстко закреплён, а на втором находится груз массы m.

Когда на массивное тело действует упругая сила, возвращающая его в положение равновесия, оно совершает колебания около этого положения. Такое тело называют пружинным маятником. Колебания возникают под действием внешней силы. Колебания, которые продолжаются после того, как внешняя сила перестала действовать, называют свободными. Колебания, обусловленные действием внешней силы, называют вынужденными. При этом сама сила называется вынуждающей.

В простейшем случае пружинный маятник представляет собой движущееся по горизонтальной плоскости твердое тело, прикрепленное пружиной к стене.

Математический маятник.

Математический маятник - осциллятор, представляющий собой механическую систему, состоящую из материальной точки, находящейся на невесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготения. Период малых собственных колебаний математического маятника длины L неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен

и не зависит от амплитуды и массы маятника.

Плоский математический маятник со стержнем - система с одной степенью свободы. Если же стержень заменить на растяжимую нить, то это система с двумя степенями свободы со связью. Пример школьной задачи, в которой важен переход от одной к двум степеням свободы.

При малых колебаниях физический маятник колеблется так же, как математический с приведённой длиной.

Физический маятник.

Физический маятник - осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.

8) Колебания с трением. Диссипативная функция.

В реальных системах всегда происходит диссипация энергии. Если потери энергии не будут компенсироваться за счет внешних устройств, то колебания с течением времени будут затухать и через какое-то время прекратятся вообще. Рассмотрим колебания пружинного маятника в вязкой среде.

Для тела, движущегося в однородной вязкой среде, сила трения зависит только от скорости. При малых скоростях можно считать, что сила трения

, где бета – положительный постоянный коэффициент.

К энергии

Выводы.

· Характер собственных колебаний при наличии силы трения определяется соотношением между и . При – апериодический режим (3); – колебания описываются периодическим законом c экспоненциально убывающей от времени амплитудой (4); – режим критического затухания (5).

· Добротность колебательной системы является очень важным параметром, характеризующим диссипационные процессы в системе.

Диссипативная функция (функция рассеяния) - функция, вводимая для учёта перехода энергии упорядоченного движения в энергию неупорядоченного движения, в конечном счёте - в тепловую, например, для учёта влияния сил вязкого трения на движение механической системы. Диссипативная функция характеризует степень убывания механической энергии этой системы. Диссипативная функция, делённая на абсолютную температуру, определяет скорость, с которой возрастает энтропия в системе (т. н. производство энтропии). Диссипативная функция имеет размерность мощности.


9) Вынужденные колебания без трения. Биения. Резонанс.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20

При имеющейся замкнутой механической системе тела взаимодействуют посредством сил тяготения и упругости, тогда их работа равняется изменению потенциальной энергии тел с противоположным знаком:

A = – (E р 2 – E р 1) .

Следуя из теоремы о кинетической энергии, формула работы примет вид

A = E k 2 - E k 1 .

Отсюда следует, что

E k 2 - E k 1 = – (E р 2 – E р 1) или E k 1 + E p 1 = E k 2 + E p 2 .

Определение 1

Сумма кинетической и потенциальной энергии тел , составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной .

Данное утверждение выражает закон сохранения энергии в замкнутой системе и в механических процессах, являющийся следствием законов Ньютона.

Определение 2

Закон сохранения энергии выполняется при взаимодействии сил с потенциальными энергиями в замкнутой системе.

Пример N

Примером применения такого закона служит нахождение минимальной прочности легкой нерастяжимости нити, которая удерживает тесло с массой m , вращая его вертикально относительно плоскости (задачи Гюйгенса). Подробное решение изображено на рисунке 1 . 20 . 1 .

Рисунок 1 . 20 . 1 . К задаче Гюйгенса, где F → принимается за силу натяжения нити в нижней точке траектории.

Запись закона сохранения полной энергии в верхней и нижней точках принимает вид

m v 1 2 2 = m v 2 2 2 + m g 2 l .

F → располагается перпендикулярно скорости тела, отсюда следует вывод, что она не совершает работу.

Если скорость вращения минимальная, то натяжение нити верхней точке равняется нулю, значит, центростремительное ускорение может быть сообщено только при помощи силы тяжести. Тогда

m v 2 2 l = m g .

Исходя из соотношений, получаем

v 1 m i n 2 = 5 g l .

Создание центростремительного ускорения производится силами F → и m g → с противоположными направлениями относительно друг друга. Тогда формула запишется:

m v 1 2 2 = F - m g .

Можно сделать вывод, что при минимальной скорости тела в верхней точке натяжение нити будет равняться по модулю значению F = 6 m g .

Очевидно, что прочность нити обязана превышать значение.

С помощью закона сохранения энергии посредством формулы можно получить связь между координатами и скоростями тела в двух разных точках траектории, не используя анализ закона движения тела во всех промежуточных точках. Данный закон позволяет заметно упрощать решение задач.

Реальные условия для движущихся тел предполагают действия сил тяготения, упругости, трения и сопротивления данной среды. Работа силы трения зависит от длины пути, поэтому она не является консервативной.

Определение 3

Между телами, составляющими замкнутую систему, действуют силы трения, тогда механическая энергия не сохраняется, ее часть переходит во внутреннюю. Любые физические взаимодействия не провоцируют возникновение или исчезновение энергии. Она переходит из одной формы в другую. Данный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии .

Следствием является утверждение о невозможности создания вечного двигателя (perpetuum mobile) – машины, которая совершала бы работу и не расходовала энергию.

Рисунок 1 . 20 . 2 . Проект вечного двигателя. Почему данная машина не будет работать?

Существует большое количество таких проектов. Они не имеют право на существование, так как при расчетах отчетливо видны одни ошибки конструкций всего прибора, другие замаскированы. Попытки реализовать такую машину тщетны, так как они противоречат закону сохранения и превращения энергии, поэтому нахождение формулы не даст результатов.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

где – внешняя результирующая сила, приложенная к системе. Важным примером систем с переменной массой являются ракеты, которые движутся вперед за счет выбрасывания назад сгоревших газов; при этом ракета ускоряется силой, действующей на нее со стороны газов. Масса М ракеты все время уменьшается, т.е. dM / dt < 0. 2)Уравнение Мещерского. Уравнение Мещерского - основное уравнение в механике тел переменной массы Основной закон динамики поступательного движения тела переменной массы, уравнение Мещерского, имеет вид- ma=Fреакт+Fвнешн А формула Циолковского такова: V=U*ln m0/m 3)Реактивное движение. Реактивное движение - это движение, которое возникает при отделении от тела некоторой его части с определенной скоростью. Реактивное движение, например, выполняет ракета для расчета скорости ракеты. Рассмотрим в качестве примера действие реактивного двигателя. При сгорании топлива газы, нагретые до высокой температуры, выбрасываются из сопла ракеты со скоростью
Ракета и выбрасываемые ее двигателем газы взаимодействуют между собой. На основании закона сохранения импульса при отсутствии внешних сил сумма векторов импульсов взаимодействующих тел остается постоянной. До начала работы двигателей импульс ракеты и горючего был равен нулю; следовательно, и после включения двигателей сумма векторов импульса ракеты и импульса истекающих газов равна нулю: , (17.1) где - масса ракеты; - скорость ракеты; - масса выброшенных газов; - скорость истечения газов. Отсюда получаем , (17.2) а для модуля скорости ракеты имеем . (17.3) Эта формула применима для вычисления модуля скорости ракеты при условии небольшого изменения массы ракеты в результате работы ее двигателей. 4)Реактивная сила. Движение большинства современных самолётов является реактивным, т.к. происходит в результате истечения с огромной скоростью нагретых в двигателе газов. При этом самолёт движется в сторону, противоположную скорости истечения газов. Так же движутся и ракеты, выбрасывая из сопла продукты сгорания топлива. Примером реактивного движения может служить и отдача ствола пушки при выстреле. Силу, действующую на тело при реактивном движении, называют реактивной силой . Билет № 12- Неинерциальные системы отсчета В неинерциальных системах законы Ньютона, вообще говоря, уже не справедливы. Однако законы динамики можно применять и для них, если кроме сил, обусловленных воздействием тел друг на друга, ввести в рассмотрение силы особого рода - так называемые силы инерции. Если учесть силы инерции, то второй закон Ньютона будет справедлив для любой системы отсчета: произведение массы тела на ускорение в рассматриваемой системе отсчета равно сумме всех сил, действующих на данное тело (включая и силы инерции). Силы инерции Fин при этом должны быть такими, чтобы вместе с силами F, обусловленными воздействием тел друг на друга, они сообщали телу ускорение а" каким оно обладает в неинерциальных системах отсчета, т. е. Так как F = mа (а - ускорение тела в инерциальной системе отсчета), то Силы инерции Силы инерции- силы,обусловленные ускоренным движением неинерциальной системы отсчета (НСО) относительно инерциальной системы отсчета (ИСО). Основной закон динамики для неинерциальных систем отсчета: , где - сила, действующая на тело со стороны других тел; - сила инерции, действующая на тело относительно поступательно движущейся НСО. - ускорение НСО относительно ИСО. Она появляется, например, в самолете при разгоне на взлетной полосе; - центробежная сила инерции, действующая на тело относительно вращающейся НСО. - угловая скорость НСО относительно ИСО, - расстояние от тела до центра вращения; - кориолисова сила инерции, действующая на тело, движущееся со скоростью относительно вращающейся НСО. - угловая скорость НСО относительно ИСО (вектор направлен вдоль оси вращения в соответствии с правилом правого винта). Силы инерции направлены в сторону, противоположную ускорению. Силы инерции возникают только в системе отсчета, движущейся с ускорением, т.е. это кажущиеся силы. Центробежная сила инерции Рассмотрим вращающийся диск с закрепленными на нем стойками с шариками, подвешенными на нитях (рис.2). При вращении диска с постоянной угловой скоростью  шарики отклоняются на некоторый угол, тем больший, чем дальше он находится от оси вращения. Относительно инерциальной системы отсчета (неподвижной) все шарики движутся по окружности соответствующего радиуса