Развертка многогранника для склеивания. Пирамида - развертка. Развертка пирамиды для склеивания. Развертки из бумаги

Здесь уже публиковались модели многогранников (http://master.forblabla.com/blog/45755567715/Mnogogranniki), но хочется добавить свои. Ссылка та же, на wenninger.narod.ru. У меня сначала появилась книга, потом, когда подключился к интернету, написал даже письмо автору и получил ответ, потом книга с письмом потерялись, но нашёл сайт и продолжил делать модели.

Если интересно, могу каждый сфотографировать отдельно.

Александр

Ну что ж, по просьбе трудящихся выкладываю фото всех многогранников. Названия я особо не помню, я их классифицирую по многогранному углу. В книге (Веннинджер. Модели многогранников) собраны как многогранники, так и их звёзчатые формы. Платоновы тела это 5 выпуклых правильных многогранников. У них грани одного типа (правильные треугольники, квадраты и пятиугольники) и все многогранные углы одинаковы. Архимед добавил ещё 13 выпуклых полуправильных многогранников (грани - разные многоугольники, но все углы по-прежнему одинаковы). А вот если брать не выпуклые многоугольники (в книге используются треугольники, квадраты, пятиугольники, восьмиугольники и десятиугольники), а их звёздчаные формы (пятиугольная, восьмиугольная и десятиугольная звезды), то получается масса новых многогранников. К тому же, грани могут соединяться также в виде звёзд, поэтому невыпуклые многогранники могут состоять, как из звёздчатых многоугольников, так и из выпуклых.

Наконец, аналогично тому, что продолжение линий превращает выпуклый многоугольник в звёздчатый, так и продолжение граней образует звёздчатые формы. Правда, известно только 4 правильных многогранников такого типа (все три звёздчатые формы додекаэдра и одна звёздчатая форма икосаэдра), у других либо грани - неправильные многоугольники, либо многогранник распадается на несколько отдельных многогранников.

Особую красоту дают формы, у которых грани видны с двух сторон, а также содержащие дыры, плюс те, части которых только касаются друг друга вершинами.

Конечно, у многогранников есть своя математика, но об этом потом.

Фото сопровождаются моделями многогранных углов. Это основание пирамиды, которая получится, если от вершины многогранника отрезать кусочек, как от торта. 3, 4, 5, 6, 8 и 10 обозначают выпуклые многоугольники, 5/2, 8/3 и 10/3 - пятиугольную, восьмиугольную и десятиугольную звезду (последовательность вершин делает соответственно 2, 3 и 3 оборота вокруг центра).

Поехали. Сначала треугольники. (в скобках - номера моделей из книги).

Бесконечное семейство призм.


Треугольная призма.

Черырёхугольная призма, гексаэдр, куб (3).

Пятиугольная призма и её звёздчатая форма.

Шестиугольная призма.


Тетраэдр (1).


Додекаэдр (5) и три его звёздчатые формы, которые являются правильными многогранниками: малый звёздчатый додекаэдр (20), большой додекаэдр (21) и большой звёздчатый додекаэдр (22):


Усечённый тетраэдр (6).


Усечённый октаэдр (7).


Усечённый гексаэдр (куб) (8).


Усечённый икосаэдр (9). Раньше так шили футбольные мячи.


Усечённый додекаэдр (10).


Ромбоусечённый кубооктаэдр (15).


Ромбоусечённый икосододекаэдр (16).

Квазиусечённый гексаэдр (92).


Квазиусечённый кубооктаэдр (93).


Большой квазиусечённый икосододекаэдр (был. Увы, изнутри был непрочным и однажды сломался). (108)

Переходим к многогранникам, у которых в угле сходится 4 грани.

Сначала вершинная фигура в виде квадрата.

Бесконечное семейство антипризм.


Треугольная антипризма, октаэдр (2), и его звёздчатая форма - звёздчатый октаэдр (19).

Квадратная антипризма и её две звёздчатые формы.


Кубооктаэдр (11) и его звёздчатые формы (43 - 46).


Икосододекаэдр (12) и его звёздчатые формы (47, 63, 64), а в книге их очень много.


Ромбокубооктаэдр (13) и его звёздчатая форма.

А вот этот многогранник (псевдоромбокубооктаэдр) наделал много шума, т.к. его опубликовали только спустя 2000 лет после Архимеда (на рубеже 50-60 г.г. 20-го века). На самом деле, у него есть дефект: когда я говорил, что у полуправильных многогранников углы (вершинная модель) одинаковые, то можно заметить, что порядок обхода граней у соседних вершин всегда зеркальный, например, если у одной вершины грани идут в порядке 3-4-4-4 по часовой стрелке, то у соседней вершины тот же порядок, но против часовой стрелки. Так вот, у псевдоромбокубооктаэдра встречаются пары вершин, у которых нет зеркальной симметрии.


Ромбоикосододекаэдр (14).


Малый икосоикосододекаэдр (71).


Додекододекаэдр (73).


Ромбододекододекаэдр (76).


Большой икосододекаэдр (94).


Большой додекоикосододекаэдр (99).

Теперь многогранники, у которых тоже 4 грани сходятся в одной вершине, но порядок крест-накрест:


Тетрагемигексаэдр (67).


Октагемиоктаэдр (68).


Малый кубокубооктаэдр (69).

Допустим, что многогранник - многогранную поверхность - после проведения разрезов по нескольким ребрам удается развернуть на плоскость. В результате получается развертка многогранника. Развертка представляет собой плоский многоугольник, составленный из меньших многоугольников - граней исходного многогранника. Так, на рис. 1 изображены развертки всех пяти видов правильных многогранников. По ним легко восстановить, склеить соответствующие многогранники; обычно на развертках указывают, какие именно пары сторон развертки нужно склеивать для получения исходного многогранника.

Один и тот же многогранник может иметь несколько разных разверток. Например, правильный тетраэдр имеет и треугольную развертку, которая даже более удобна для склейки тетраэдра: достаточно согнуть три угловых треугольника (рис. 2). Аналогичная развертка произвольного тетраэдра представляет собой в общем случае шестиугольник с попарно равными соседними сторонами (рис. 3).

Развертки (или части разверток) применяют при изготовлении моделей различных многогранников. Пример-склейка «треугольных» (правильнее говорить «тетраэдрических») молочных пакетов. Эти пакеты не являются правильными тетраэдрами: правильные тетраэдры плохо укладываются в молочные корзины. Молочные пакеты представляют собой равногранные тетраэдры с четырьмя ребрами примерно по 17 см и двумя ребрами по 13 см. Внимательно рассмотрев пакет, вы увидите, что он склеен из... прямоугольника, получающеюся при разрезании тетраэдра по двум меньшим ребрам и большей высоте одной из граней. Легко представить обратную процедуру: как показано на рис. 4, сначала прямоугольник склеивается в цилиндр (точнее, в боковую поверхность цилиндра), а потом вдоль взаимно перпендикулярных диаметров оснований в тетраэдрический пакет. Конечно, технологически это осуществить проще, чем склейку пакета из треугольника, - не потребуется даже никаких клапанов для склейки.

«Он же, не смутясь нимало.
Развернул пазы и петли.
Стал вертеть их так и эдак,
Пока все вдруг не предстало
В виде плоскостей, квадратов,
Точно сложная фигура
Из Эвклидова трактата».
Л. Кэррол

Развертки помогают решать задачи на отыскание кратчайшего пути (по поверхности фигуры) из одной точки в другую. Например, чтобы из всех путей вида , ведущих по поверхности куба из вершины в противолежащую вершину (рис. 5,а), выбрать кратчайший, достаточно развернуть две соседние грани и соединить точки и отрезком прямой (рис. 5,б). Кратчайший путь будет проходить через середину ребра (всего таких путей будет 6 - по числу разделяющих точки и ребер куба). Обратите внимание: точно так же решается и задача о кратчайшем «перевале» через ребро любого двугранного угла (рис. 6).

Рассматривая молочный пакет, мы видели, что цилиндрическую поверхность тоже можно развернуть на плоскость. Это верно и для поверхности конуса: разрезав ее по окружности основания и по одной из образующих, после разворачивания мы получим (касающиеся друг друга) круг и круговой сектор (рис. 7,а,б). Если кривая на поверхности не пересекает линии разреза, то ее длина при разворачивании не меняется. Поэтому и в случае цилиндра и конуса развертку можно применить для отыскания кратчайшего пути из точки в точку , идущего по боковой поверхности конуса или цилиндра. Конечно, при этом следует позаботиться о выборе линии, по которой делать разрез, иначе можно получить не самый короткий путь, а лишь более короткий по сравнению с ближайшими путями (пунктир на рис. 7, а).

Развертки цилиндра и конуса можно использовать и для вычисления площадей их боковых поверхностей ( - для цилиндра и - для конуса). Однако этот метод определения площадей далек от универсальности, ибо большинство искривленных поверхностей нельзя развернуть на плоскость с сохранением длин и площадей. С этим, в частности, связаны трудности при изготовлении покрышек для мячей.

В основе самых сложных и необычные формы сооружений, устройств, механизмов лежат элементарные геометрические фигуры: куб, призма, пирамида, шар и другие. Для начала научитесь создавать самые простые фигуры, а после вы легко освоите более сложные формы.

Многие моделисты начинают свой путь с бумажных моделей. Это обусловлено доступностью материала (найти бумагу и картон не составляет трудности) и легкостью в его обработки (не требуются специальные инструменты).

Однако, бумага имеет и ряд характерных особенностей:

  • капризный, хрупкий материал
  • требует высокой аккуратности, внимательности, усидчивости при работе

По этим причинам бумага является материалом, как для начинающих, так и для настоящих мастеров и из нее создаются модели самой разной сложности.

В этот статье мы изучим простейшие геометрические фигуры, которые можно сделать из бумаги.

Вам понадобятся следующие материалы:

  • лист бумаги
  • карандаш
  • линейка
  • ластик
  • ножницы
  • клей ПВА либо клеящий карандаш
  • кисточка для клея, лучше из жесткой щетины
  • циркуль (для некоторых фигур)

Как сделать куб из бумаги?

Куб – правильный многогранник, каждая грань которого представляет собой квадрат

Создание куба состоит из двух этапов: создание развертки и склеивание. фигуры. Для создания схемы вы можете воспользоваться принтером, просто распечатав готовую схему. Либо вы можете самостоятельно с помощью чертежных инструментов нарисовать развертку.

Рисование развертки:

  1. Выбираем размеры квадрата - одной стороны нашего куба. Лист бумаги должен быть шириной не менее 3 сторон этого квадрата и длиной немного более 4 сторон.
  2. Чертим в длину нашего листа четыре квадрата, которые станут боковыми сторонами куба. Рисуем их строго на одной линии, вплотную друг к другу.
  3. Над и под любыми из квадратов рисуем по одному такому же квадрату.
  4. Дорисовываем полоски для склеивания, с помощью которых грани будут соединяться между собой. Каждые две грани должны соединяться одной полоской.
  5. Куб готов!

После рисования развертка вырезается ножницами и склеивайте ПВА. Клей очень тонким слоем равномерно размазываем кистью по поверхности склеивания. Соединяем поверхности и закрепляем в нужном положении на некоторое время, с помощью скрепки или небольшого груза. Срок схватывания клея где-то 30-40 минут. Ускорить высыхание можно методом нагрева, например, на батарее. После склеиваем следующие грани, закрепляем в нужном положении. И так далее. Так постепенно вы проклеите все грани куба. Используйте небольшие порции клея!

Как сделать конус из бумаги?

Конус – тело, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность.

Рисование развертки:

  1. Рисуем циркулем окружность
  2. Вырезаем сектор (часть круга, ограниченная дугой окружности и двумя радиусами, проведенными к концам этой дуги) из этой окружности. Чем больший сектор вы вырежете, тем острее будет конец конуса.
  3. Склеиваем боковую поверхность конуса.
  4. Измеряем диаметр основания конуса. С помощью циркуля рисуем окружность на листе бумаге требуемого диаметра. Дорисовываем треугольнички для склеивания основания с боковой поверхностью. Вырезаем.
  5. Приклеиваем основание к боковой поверхности.
  6. Конус готов!

Как сделать цилиндр из бумаги?

Цилиндр – геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими её.

Рисование развертки:

  1. Рисуем прямоугольник на бумаги, в котором ширина - это высота цилиндра, а длина определит диаметр будущей фигуры. Отношение длины прямоугольника к диаметру определяется выражением: L=πD, где L- длина прямоугольника, а D - диаметр будущего цилиндра. Подставив в формулу требуемый диаметр, найдем длину прямоугольника, который будем рисовать на бумаге. Дорисовываем небольшие дополнительные треугольнички, которые необходимы для склеивания деталей.
  2. Рисуем на бумаге два круга, диаметром цилиндра. Это будет верхнее и нижнее основания цилиндра.
  3. Вырезаем все детали будущего бумажного цилиндра.
  4. Склеиваем боковую поверхность цилиндра из прямоугольника. Даем детали высохнуть. Приклеиваем нижнее основание. Ждем высыхания. Приклеиваем верхнее основание.
  5. Цилиндр готов!

Как сделать параллелепипед из бумаги?

Параллелепипед – многогранник, у которого шесть граней и каждая из них параллелограмм.

Рисование развертки:

  1. Выбираем размеры параллелепипеда и величины углов.
  2. Чертим параллелограмм - основание. С каждой стороне дорисовываем боковые стороны - параллелограммы. От любой из боковой стороны дорисовываем второе основание. Добавляем полоски для склеивания. Параллелепипед может быть прямоугольным, если стороны прямоугольники. Если параллелепипед не прямоугольный, то создать развертку немного сложнее. Для каждого параллелограмма нужно выдержать требуемые углы.
  3. Вырезаем развертку и склеиваем.
  4. Параллелепипед готов!

Как сделать пирамиду из бумаги?

Пирамида – многогранник, основание которого – многоугольник, а остальные грани – треугольники, имеющие общую вершину.

Рисование развертки:

  1. Выбираем размеры пирамиды и количество ее граней.
  2. Рисуем основание - многогранник. В зависимости от количества граней это может быть треугольник, квадрат, пятиугольник или другой многогранник.
  3. От одной из сторон основания рисуем треугольник, который будет боковой стороной. Следующий треугольник рисуем так, чтобы одна сторона у него с предыдущим была общая и так далее. Так рисуем столько треугольников, сколько сторон в пирамиде. Дорисовываем полоски для склеивания в нужных местах.
  4. Вырезаем и склеиваем фигуру.
  5. Пирамида готова!

Создавать поделки своими руками интересно не только детям, но и взрослым. Однако для взрослых придумано достаточное количество моделей, которые отличаются сложностью выполнения и временем, затраченным на их создание. В последнее время у взрослых и детей появился интерес к созданию сложных геометрических фигур. К такому виду фигур относится икосаэдр, который представляет собой правильный многоугольник и является одним из платоновых тел – правильных многогранников. Эта фигура имеет 20 треугольных граней (равносторонних треугольников), 30 ребер и 12 вершин, которые являются местом стыка 5 ребер. Правильный икосаэдр из бумаги собрать достаточно сложно, но интересно. Если вы увлечены оригами, то сделать икосаэдр бумажный своими руками вам не составит труда. Его сделать из цветной, гофрированной бумаги, фольги, упаковочной бумаги для цветов. Используя разнообразные материалы, можно придать еще большую красоту и эффектность своему икосаэдру. Все зависит только от фантазии его создателя и подручного материала, имеющегося на столе.

Предлагаем вам несколько вариантов разверток икосаэдра, которые можно распечатать, перенести на плотную бумагу и картон, согнуть по линиям и склеить.

Как сделать икосаэдр из бумаги: схема

Для того чтобы собрать икосаэдр из листа бумаги или картона, необходимо предварительно подготовить следующие материалы:

  • макет икосаэдра;
  • клей ПВА;
  • ножницы;
  • линейка.

Во время создания икосаэдра важно обратить особое внимание на процесс сгиба всех деталей: для того, чтобы ровно согнуть бумагу, можно использовать обычную линейку.

Примечательно, что икосаэдр можно встретить и в повседневной жизни. Например, в форме усеченного икосаэдра (многогранник, состоящий из 12 пятиугольников и 20 шестиугольников правильной формы) выполнен футбольный мяч. Это особенно видно, если раскрасить получившийся икосаэдр в черно-белый цвет, как и сам мяч.

Такой футбольный мяч можно сделать самостоятельно, распечатав предварительно развертку усеченного икосаэдра в 2 экземплярах:

Создание икосаэдра своими руками представляет интересный процесс, который требует вдумчивости, терпения и большого количества бумаги. Однако результат, полученный в итоге, будет радовать глаз еще долгое время. Икосаэдр можно дать поиграть ребенку, если он достиг уже трехлетнего возраста. Играя с такой сложной геометрической фигурой, он будет развивать не только образное мышление, пространственные навыки, но и знакомиться с миром геометрии. Если же взрослый решил создать икосаэдр самостоятельно, то такой творческий процесс по конструированию икосаэдра позволит скоротать время, а также похвастаться перед близкими своим умением создавать сложные фигуры.











У вас есть немного свободного времени? Бумага, ножницы и клей?
Тогда приступаем:


Что такое развертка многогранника? Вы скажете — кусок картона, из которого можно свернуть данный многогранник. В этом есть правда, но это не вся правда. Оказывается, понятие развертки включает в себя больше, чем просто кусок картона.

Какой многогранник можно свернуть из столь хорошо известного латинского креста? Конечно же, куб. Для этого надо покрасить ребра, как это сделала наша волшебная кисточка (ребра одинакового цвета склеиваются в многограннике друг с другом).

На самом деле, конечно же, лучше было бы раскрашивать не ребра, а каждую пару точек в разные цвета. Это бы задало, как говорят в математике, условия склейки границ.

После того как условия склейки границ заданы, ребра, проходящие внутри куска картона, определены однозначно по теореме А.Д. Александрова.

Итак, из креста можно сложить куб.

Но оказывается, что если условия склейки границ задать по-другому, то можно получить совсем даже не куб!

Наша волшебная кисточка покрасила границы вот таким образом. Еще один ее взмах — и мы уже знаем, как определены ребра внутри куска картона. Если теперь, следуя нарисованным условиям склейки, сложить многогранник, то получим пирамиду!

Не так давно было доказано, что по-разному задавая условия склейки границ латинского креста, из него можно сложить 5 различных типов выпуклых многогранников.

Итак, как мы убедились, в понятие развертки входит не только кусок картона, но и условия склейки его границ. Если последнее не определено, то из одного и того же куска можно сложить разные выпуклые многогранники.
РАЗВЁРТКИ КУБА
Почти каждый, кто пытается самостоятельно найти все развёртки куба
сталкивается с вопросом: все ли развёртки найдены? Дело в том, что куб очень симметричная фигура и на подсознательном уровне нам кажется, что и число развёрток куба должно быть каким-то «красивым», похожим на другие характеристики куба (напомним, что куб имеет 12 рёбер, 8 вершин, 6 граней и 4 диагонали). Как оказалось, куб имеет 11 развёрток. И когда мы находим 11-ю развёртку, кажется, что не все ещё развёртки найдены и самые сложные ещё скрыты от нас.
Куб имеет именно 11 развёрток.



РАЗВЁРТКА ПИРАМИДЫ



Сделать пирамиду из бумаги очень легко, потому что я представлю вам готовую развертку, вам только нужно будет перенести ее на ваш лист, вырезать и склеить. Но, есть одно Большое И Положительное Но, если у вас есть принтер, тогда Вы сделаете пирамиду как минимум в два раза быстрее. Если он у вас есть, тогда надо только распечатать развертку на принтере, вырезать и склеить – Все, пирамида готова! На этом все. Пользуйтесь на здоровье, делайте свою жизнь проше и получайте в школе за геометрические финуры только пятеркИ, ну или хотя бы четверки! Удачи!



Посмотрите интересные развёртки