«Как работает Вселенная». Глава из книги. По каким законам работает наша вселенная Как работает вселенная введение в современную космологию

Как работает Вселенная

Если сегодня утром вы проснулись скорее здоровым, чем больным, то на вас большее благословение, чем на том миллионе человек, которые не пережили эту неделю.

Если ваш холодильник наполнен продуктами, если на спинке вашего стула висит одежда, а над головой у вас есть крыша, то вы богаче, чем 75 % населения нашей планеты.

Если в вашем бумажнике есть деньги или если у вас открыт счет в банке, то вы находитесь в числе 8 % самых богатых людей планеты.

Если вы посмотрите в небо с улыбкой и искренне поблагодарите Провидение, то получите благословение. Большинство людей могут это сделать, но большая часть из них почему-то этого не делают.

Вам когда-нибудь приходила в голову идея создания нового товара или услуги, но вы не предпринимали никаких действий для ее воплощения? Возможно, это была идея о новой детской игрушке, или о новом шампуне, или о новом приспособлении, которое помогло бы определенной группе людей. Вы делали что-нибудь, чтобы воплотить эту идею в жизнь? Если нет, то почему?

Давайте рассмотрим этот вопрос с другой стороны. Вы когда-нибудь просили высшие силы о помощи, но не получали того результата, о котором просили? Вы когда-нибудь представляли себе что-то и не получали воображаемого? Как думаете, в чем проблема?

Чтобы понять суть Ключа, позвольте объяснить вам, как происходит взаимодействие между нами и Вселенной.

1. Вселенная (назовите ее Богом, высшими силами, ТЬорцом, жизненной силой, нулем, Дао или как угодно еще) постоянно отправляет и получает сообщения. Она дает вам вдохновение и получает от вас просьбы.

2. Это общение фильтруется нашей системой установок, которая либо побуждает предпринимать какие-то действия, либо бездействовать.

3. Получаемый результат является следствием двух первых этапов, к тому же его оценка тоже зависит от нашей системы установок.

Как следует из рисунка, созданного Сюзанной Бернс, Вселенная (или Бог, или любое другое имя высших сил) готова принимать от вас просьбы и стремится отправить вам послания. Данное взаимодействие проходит через фильтр ваших установок. Конечным результатом является то, что вы получаете в реальности. Но если вы измените свои установки, то, соответственно, получите и новую реальность.

Например, когда вас посещает идея о создании нового товара, она приходит к вам как дар от Вселенной. Но после того как вы проанализируете эту идею, вы оцениваете ее. Возможно, вы думаете так: «Но я не знаю, как это реализовать» или «Но откуда я возьму деньги?», или «Конечно, кто-то другой наверняка уже думал об этом». Подобные оценки и сомнения являются результатом ваших установок. И эти установки останавливают вас. В итоге вы не создаете новый товар. А позже и впрямь обнаруживаете, что кто-то другой воплотил вашу идею в жизнь. Вот почему я всегда говорю: «Вселенная любит скорость». Она посылает идею о новом продукте или услуге нескольким людям одновременно, зная, что большинство из них не станет ничего предпринимать. Успех же приходит к тому, кто действует.

А что, если попросить Вселенную о помощи? Она всегда на месте, готова выслушать и выполнить просьбу. Однако часто, когда она старается вам помочь, ей препятствуют ваши собственные установки. Например, вы можете попросить Вселенную о встрече с идеальным человеком, с которым вы хотите вступить в брак. Вселенная слышит вашу просьбу и стремится подтолкнуть вас к группе людей, среди которых вы можете встретить свой идеал. Но вы убеждаете себя никуда не ходить примерно так: «Но я уже встречался с ними раньше» или «Никто не захочет меня видеть, потому что я слишком (выберите любое определение)».

Вселенная готова вам помочь, но вы сами себе мешаете добиться успеха.

Очень важно понять, что установки, действующие в вашем мире, скорее всего, не являются сознательными. У вас есть как сознательные, так и неосознанные установки. Чем менее осознаваема установка, тем она сильнее. Установки становятся программами, руководящими вашей жизнью. Чтобы очиститься, вы должны избавиться от самых глубинных установок. При этом Вселенная начинает работать подобно тому, как показано на рисунке.

Как следствие, вы живете в мире, который является результатом ваших установок. Чтобы изменить результат, вы должны изменить подсознательные установки. Именно от них нужно очиститься. И снова повторю, что очищение – это утраченный секрет для привлечения желаемого.

Это – Ключ.

Из книги Искусство Быть Собой автора Леви Владимир Львович

ЭТО СВЕРНУТАЯ ВСЕЛЕННАЯ Невесть сколько чувств, догадок, идей живут, дремлют и гаснут в нас, так и оставаясь «свернутыми», не доходя до «верха». Время «жизни» в сознании того или иного представления, чувства, мысли и т. п. установить легко; в подсознании же это время

Из книги Геопсихология в шаманизме, физике и даосизме автора Минделл Арнольд

Вселенная Навахо Основу многих мифов о сотворении мира составляет идея, что вселенную создала какая-то форма непосредственной осведомленности, проецировавшаяся на богов или других существ. Подобно уравнениям физики, мифы коренных народностей о сотворении мира говорят

Из книги 48 аффирмаций для укрепления веры в себя автора Правдина Наталия Борисовна

Из книги Цивилизационные кризисы в контексте Универсальной истории [Синергетика – психология – прогнозирование] автора Назаретян Акоп Погосович

Из книги Пробуждение сознания. 4 шага к жизни, о которой вы мечтаете автора Витале Джо

Сотворчество: вы и Вселенная Джо: Впрочем, идея о необходимости действия, которую ты сейчас процитировал, имеет ключевое значение. Слишком многие бездействуют: просто сидят, визуализируют, медитируют, молитвенно складывают ладони и что-то бормочут себе под нос. Они

Из книги Секрет абсолютно женственности автора де Анджелис Барбара

Страсть и Вселенная Мы живем в очень страстной Вселенной. Если вы внимательно посмотрите вокруг, вы увидите, что кем бы ни был создан наш физический мир, сделано это с огромной страстью. Природа щедра и многообразна в своих проявлениях, и это указывает на то, что

Из книги Тысячеликий герой автора Кэмпбелл Джозеф

1. Мать Вселенная Порождающий мир дух отца переходит в многообразие земного опыта через посредника трансформации - мать мира. Она является персонификацией изначальной стихии, упоминаемой во втором стихе главы первой Книги Бытия, где мы читаем «И Дух Божий носился над

Из книги Homo Sapiens 2.0 [Человек Разумный 2.0 http://hs2.me] автора Sapiens Homo

Из книги Homo Sapiens 2.0 автора Sapiens 2.0 Homo

Если работает, значит работает Между психикой человека и механизмами, которые он создает, есть очень много общего, однако человек не привык анализировать собственные действия столь комплексно, как анализирует механизмы. В связи с этим в поведении человека существует

Из книги Манипулятор [Секреты успешной манипуляции человеком] автора Адамчик Владимир Вячеславович

Своя Вселенная Тест «Приятны ли вы в общении?» Парадокс: если человек любит пообщаться, это еще не значит, что с ним приятно разговаривать! Предлагаю вам проверить себя – так, на всякий случай.Для этого ответьте на вопросы:1. Любите ли вы больше слушать, чем говорить?2. Вы

Из книги Самоосвобождающаяся игра автора Демчог Вадим Викторович

24. Самоорганизующаяся вселенная или САМОВОЗРОЖДАЮЩАЯСЯ! Или еще лучше - САМООСВОБОЖДАЮЩАЯСЯ! И это самое веселое из возможного! Высший взгляд и высшая потенция Театра Реальности!Итак, «Живой организм - это самоорганизующаяся система. Это означает, что ее

Из книги Осмысление процессов автора Тевосян Михаил

Из книги Без революций. Работаем над собой, оставаясь в гармонии автора Стивенс Майкл

Раздробленная вселенная Если бы все во вселенной было независимо друг от друга, ничего бы не менялось. Не было бы хаоса. Не было бы взаимодействия. Не было бы ничего вообще. Если бы вселенная на самом деле состояла из отдельных частей, каждая ее «часть» жила бы своей

Из книги Интеллект: инструкция по применению автора Шереметьев Константин

Вселенная ждет Поймал старик Золотую рыбку и только рот открыл, а она ему:– Кончай прикалываться, Хоттабыч!Как только вы начинаете развивать интеллект, то скоро понимаете, что те проблемы, с которыми сталкивается большинство людей, – это проблемы от невежества.То есть,

Из книги Квантовый ум [Грань между физикой и психологией] автора Минделл Арнольд

Из книги Ключ к подсознанию. Три магических слова – секрет секретов автора Андерсон Юэлль

Живая вселенная Единое сознание, эта первопричина, эта бесконечная энергетическая субстанция, – вот из чего сделано все. В чистом виде это можно представить как некое информационное движение, которое точнее можно было бы назвать законом. Его основополагающее

Премия Просветитель

Zimin Foundation

«Как работает Вселенная»

Космологии как науке всего сто лет, а она уже очень многое знает о том, как устроена наша Вселенная - как образовалось все, что нас окружает, от атомов до галактик, где и когда произошел Большой взрыв, что означает разбегание галактик и каково будущее Вселенной. Об этой науке и ее достижениях рассказывает книга С.Л. Парновского «Как работает Вселенная: Введение в современную космологию» («Альпина нон-фикшн»), вошедшая в длинный список премии «Просветитель» 2018 года. Предлагаем читателям N + 1 познакомиться с фрагментом из нее.


Большой взрыв

Итак, к 1930-м гг. стало понятно - Вселенная расширяется, что наглядно проявляется в разбегании галактик. Но ответ на вопрос о том, имела ли Вселенная начало, называемое также Большим взрывом, был не столь очевиден, как кажется на первый взгляд. Концепция Большого взрыва была предложена Леметром в 1931 г., а сам термин был предложен Фредом Хойлом в 1949 г. (Фред Хойл был противником идеи о том, что Вселенная имела начало, и термин «Большой взрыв» был первоначально использован в уничижительном контексте.)

Дело в том, что значение постоянной Хаббла в прошлом могло значительно отличаться от современного. Если бы оно было больше, это означало, что оценка времени существования Вселенной является завышенной и Большой взрыв неизбежно должен был быть. С подобной ситуацией мы имеем дело во всех типах модели Фридмана, в которых постоянная Хаббла падает по мере увеличения возраста Вселенной, отсчитываемого от Большого взрыва. Закон, по которому меняется постоянная Хаббла, зависит от того, чем преимущественно заполнена Вселенная. Если Вселенная заполнена так называемой «холодной» материей, т. е. частицами и объектами, скорости которых существенно меньше скорости света, например звездами, пылью, межзвездным газом, то падение постоянной Хаббла происходит по одному закону. Если материя представлена в виде частиц, движущихся со скоростью, равной (например, фотонов - квантов электромагнитного излучения) или близкой (например, нейтрино, которое, по современным представлениям, имеет малую ненулевую массу покоя) к скорости света, то падение происходит быстрее. В любом случае в момент Большого взрыва постоянная Хаббла для модели Фридмана бесконечно велика.

Но если постоянная Хаббла была меньше, чем в настоящее время, можно допустить ситуацию, когда галактики разлетались до современного состояния в течение бесконечного промежутка времени, т. е. в таких моделях Вселенная существовала всегда и Большого взрыва просто не было. Примером таких моделей является решение де Ситтера, в котором Вселенная пуста, но существует космологическая постоянная. В этом случае размеры Вселенной экспоненциально возрастают со временем, т. е. раньше она была существенно меньше. В этой модели нет Большого взрыва. Однако против моделей без Большого взрыва существует, казалось бы, убедительный аргумент. Раз галактики разбегаются, то в прошлом они располагались ближе друг к другу. Отправляясь во все более далекое прошлое, мы получаем Вселенную с очень большой плотностью материи.

Тем не менее астрономы придумали модель вечно расширяющейся Вселенной, в которой в прошлом мы наблюдали бы точно такую же картину, как и сейчас. Эта удивительная модель, предложенная Фредом Хойлом и Джаянтом Нарликаром, называется стационарной и имеет черты как статической модели Эйнштейна (ничего не меняется со временем), так и динамической модели Фридмана (Вселенная расширяется). Создатели этой теории выдвинули так называемый «идеальный космологический принцип», или абсолютный принцип Коперника. Обычный принцип Коперника утверждает, что свойства Вселенной одинаковы во всех точках пространства. Этот принцип возник из осознания того, что Земля не является центром Вселенной и ее расположение не является чем-то особенным. «Идеальный» космологический принцип добавляет к этому независимость от времени. Стремление к идеальному миру в сочетании с отсутствием в то время прямых доказательств существования Большого взрыва привело к появлению таких странных идей.

Для того чтобы при расширении Вселенной плотность не падала, понадобилось предположить, что материя возникает из ничего равномерно во всей Вселенной, причем с такой скоростью, чтобы компенсировать разрежение, вызванное расширением. Эта теория непрерывного творения материи может быть описана также в более завуалированном виде. Предположим, что во Вселенной существует неизвестное пока науке поле, названное C-полем (от английского слова creation - создание), которое, с одной стороны, обеспечивает расширение Вселенной, а с другой - может превращаться в обычную материю, обеспечивая ее непрерывную генерацию. Расчеты показали, что, согласно этой теории, в 1 м 3 должен рождаться один атом водорода за миллиард лет.

Основополагающие статьи о стационарной космологии были опубликованы Германом Бонди, Томасом Голдом и Фредом Хойлом в 1948 г. Как ни странно, эта теория до сих пор имеет некоторое число сторонников во главе с Нарликаром, одним из ее авторов, которые пытаются объяснить современные космологические данные, используя стационарную модель в XXI в. Подробный рассказ о развитии этой теории можно найти в обзоре Хельги Краг. Следует отметить, что существует весьма небольшое число ученых, отрицающих Большой взрыв.

Теория Большого взрыва была детально проработана. Это сделал уроженец Одессы Георгий (Джордж) Гамов. Советский физик, член-корреспондент Академии наук СССР, он со своей семьей бежал на Запад, где продолжал заниматься физикой. В рамках теории Большого взрыва он подробно рассмотрел все стадии, которые прошла Вселенная на раннем этапе своего существования. Теория отвечала на вопрос, какие частицы и в каком количестве заполняли Вселенную в каждый момент времени, как менялась ее температура, как происходил нуклеосинтез, т. е. образование ядер более тяжелых элементов из более легких элементов.

Это была первая космологическая модель, которая не ограничивалась решением уравнения Эйнштейна. Она использует космологическое решение Фридмана, но особое внимание уделялось тому, чем была заполнена Вселенная на разных стадиях своего развития и какие процессы при этом происходили. Содержимое Вселенной влияло на скорость ее расширения, так что и расширение Вселенной, и эволюцию заполняющей ее материи надо было исследовать одновременно.

Все предсказания теории Гамова, которые можно было проверить по астрономическим данным, подтверждались, а открытие реликтового излучения стало решающим аргументом в пользу ее правоты. С тех пор в продолжение десятилетий космологи называли теорию Гамова стандартной космологической моделью, поскольку она лежала в основе всех космологических расчетов. Отдельные детали уточнялись, но существенной переработке не подвергались. По справедливости, Гамов должен был бы разделить Нобелевскую премию по физике 1978 г. с Пензиасом и Уилсоном, но Гамов умер в 1968 г., а Нобелевскую премию нельзя получить посмертно.

Заметим, что кроме стандартной космологической модели Гамов получил и другие результаты, достойные Нобелевской премии, например создал теорию альфа-распада ядер. Трудно сказать, счел ли Нобелевский комитет этот результат недостаточно важным для Нобелевской премии или не захотел ссориться с Советским Союзом, который был бы явно не в восторге, если бы премию вручили невозвращенцу. Любопытно, что теоретически он мог также претендовать и на Нобелевскую премию по физиологии и медицине за объяснение принципов записи информации в ДНК триплетами нуклеотидов.

Но вернемся к стандартной космологической модели, которая сама по себе, безусловно, заслуживала Нобелевской премии. Популярное изложение выводов этой модели можно найти во многих книгах, в том числе научно-популярных. Бестселлером в свое время стала книга лауреата Нобелевской премии Стивена Вайнберга «Первые три минуты», в которой описаны первые три минуты существования нашей Вселенной, согласно теории Гамова.

Вопрос: Где именно произошел Большой взрыв?
Ответ: Нередко этот вопрос можно услышать даже от профессиональных физиков. Ответ на него прост: выберите любую точку по своему вкусу, например кончик вашего носа. Именно в этой точке произошел Большой взрыв. Впрочем, любая другая точка нашей Вселенной ничуть не хуже, поскольку в ней также произошел Большой взрыв, причем в то же самое время. История любой точки, уходящая в прошлое (еще ее называют мировой линией), рано или поздно упрется в Большой взрыв. Причиной этого вопроса, по-видимому, служат кадры научно-популярных фильмов, которые нередко иллюстрируют Большой взрыв, показанный снаружи. В реальной Вселенной Большой взрыв нельзя наблюдать снаружи, поскольку этого самого «снаружи» просто не существует. Если проводить аналогию со взрывом бомбы, то это не взрыв бомбы, наблюдаемый со стороны, а взрыв бомбы с точки зрения микробов, живущих внутри нее, хотя эта аналогия не совсем верна, поскольку бомба не является точечным объектом.

Вопрос: Применимы ли законы физики к описанию Большого взрыва?
Ответ: С точки зрения математики момент Большого взрыва является тем, что называется сингулярностью или особенностью. К Большому взрыву также применяют термин «космологическая сингулярность в прошлом». Вблизи такой сингулярности кривизна пространства-времени стремится к бесконечности.
Тут необходимо сделать небольшое отступление. Дело в том, что современная наука исходит из предположения, что повсюду в наблюдаемой части Вселенной законы физики одинаковы. Несмотря на постоянно проводимые проверки этого предположения, пока не возникло обоснованных сомнений в его справедливости. При этом слово «наблюдаемой» упомянуто не просто так, поскольку, согласно некоторым теориям, за космологическим горизонтом законы физики могут быть совершенно другими.
Теперь вернемся к Большому взрыву. Современная наука не может описать состояние Вселенной сразу после него, поскольку соответствующие теории (например, квантовая гравитация) еще не созданы. Тем не менее мы надеемся, что существующие теории могут вполне удовлетворительно описать Вселенную, возраст которой существенно превышает планковскую единицу времени, приблизительно равную 10 –42 с. Слова «мы надеемся» стоят здесь из-за того, что мы вряд ли когда-нибудь сможем наблюдать что-либо, относящееся к столь ранней стадии существования Вселенной.

Вопрос: Почему произошел Большой взрыв?
Ответ: Подобный вопрос легко задать, но на него трудно ответить. Большинство космологов считают, что Большой взрыв - результат квантовых эффектов, например квантовой флуктуации или квантового туннельного перехода.

Вопрос: Как гигантская Вселенная с множеством галактик могла образоваться в результате квантовой флуктуации?
Ответ: Начнем с удивительного факта, касающегося гигантской Вселенной с миллионами галактик. Известно, что атомное ядро имеет массу меньше, чем суммарная масса составляющих его протонов и нейтронов, что, собственно, и является причиной их существования. Это явление называется ядерным дефектом (еще говорят - дефицитом) массы. Масса в соответствии с формулой E = mc 2 уменьшается на энергию ядерных взаимодействий, деленную на квадрат скорости света. В нашей Вселенной этот эффект незначителен. Но в гравитационном поле существует свой, гравитационный, дефицит масс. Поэтому масса Вселенной равна массе составляющей ее материи минус гравитационный дефицит массы. Для замкнутой Вселенной полную массу запомнить очень просто: она равна нулю. Гравитационный дефект массы полностью компенсирует массу материи.
А образовать путем квантовой флуктуации объект с нулевой массой уже не кажется такой невозможной вещью.

Вопрос: Почему не образуются новые вселенные внутри нашей Вселенной?
Ответ: Это вовсе не факт. Существуют гипотезы о том, что новые вселенные рождаются постоянно. Возможно, что, пока вы читали это предложение, на расстоянии менее километра от вас образовалась новая вселенная. Но для внешнего наблюдателя эта вселенная схожа с экзотической элементарной частицей. Подобные частицы Моисей Марков называл фридмонами.

Вопрос: Что было до Большого взрыва?
Ответ: На этот вопрос современная наука не может дать никакого ответа. Если кто-то утверждает, что знает ответ, он, скорее всего, ошибается. Один из элегантных способов уйти от ответа на этот вопрос состоит в том, чтобы сказать, что время появилось вместе с нашей Вселенной и понятия «до Большого взрыва» просто не существует.


Полностью читайте:
Парновский С. Л. Как работает Вселенная: Введение в современную космологию. - М. : Альпина нон-фикшн, 2018. - 277 с.

В книге описана история и современное состояние космологии - науки о Вселенной в целом. Она посвящена описаниям основных идей космологии: расширяющейся Вселенной, ее возникновению в ходе Большого взрыва, эволюции, характерным величинам и т.д. Мы попытались ответить на многие часто задаваемые вопросы на эти темы. Мы подробно рассказываем про две загадки современной науки, имеющие непосредственное отношение к космологии, - темную материю и темную энергию.

Эта книга отличается от большинства научно-популярных книг. Золотое правило их написания гласит: каждая формула в тексте уполовинивает число потенциальных читателей. Тем не менее мы рискнули и используем уравнения, но только там, где они необходимы. Мы постарались свести количество формул до минимума и сделать их настолько простыми, насколько это возможно, понятными для всех, кто изучал математику или физику в институте. Формулы собраны в особые разделы, отмеченные в оглавлении звездочками как «Расширенный материал», и они должны рассматриваться именно так. Кроме того, в тексте они отмечены изображением Альберта Эйнштейна.

Если вы их пропустите, это не ухудшит понимание материала, однако в основном тексте есть несколько ссылок на эти разделы, поэтому советуем хотя бы просмотреть их. Каждая такая часть начинается с краткого резюме. Эти разделы составляют своеобразный простой учебник по космологии для тех, кто не знаком с математическим аппаратом общей теории относительности (далее ОТО), но хотел бы понять, откуда берутся законы космологии.

Остальная часть книги рассчитана на широкую аудиторию, хотя и предполагает некоторый минимальный уровень знания математики и физики. Тем, у кого нет даже базовых знаний в области астрономии, мы настоятельно рекомендуем прочитать несколько популярных книг по астрономии. В качестве первой мы предлагаем вышедшую в 1969 г. работу Айзека Азимова «Вселенная: от плоской Земли до квазаров», которая, впрочем, несколько устарела, но это с лихвой компенсируется легкостью и доходчивостью текста. Другие предложения для чтения перечислены в конце раздела «Выводы».

Мы старались излагать материал без упрощений, свойственных научно-популярной литературе, и объяснять, на каких основаниях делаются те или иные предположения или оценки в космологии. В тех вопросах, где современная космология сталкивается с проблемами, мы не только их не скрывали, но, наоборот, уделяли им повышенное внимание. То же самое относится к ситуациям, относительно которых у ученых нет однозначного мнения. Мы не пытались выдавать гипотезы за устоявшиеся теории, как это нередко бывает. В некотором смысле эта книга находится где-то между научно-популярной книгой и учебником, являясь своего рода мостом через ущелье, отделяющее популярную науку от истинной науки.

Книга основана на монографии «Введение в современную космологию» [Парновский, Парновский, 2013], которая была хорошо принята гораздо более широкой аудиторией, чем мы ожидали. Мы переработали материал с учетом вопросов и пожеланий читателей и попытались объяснить все научные термины, которые используем.

6.1. Черные дыры

Выполним наше обещание и расскажем о некоторых экзотических объектах, предсказанных ОТО. Они существенно менее распространены, чем темная материя или темная энергия, однако достаточно интересны, чтобы быть по крайней мере упомянутыми в этой книге.

Первый тип объектов, которые мы рассмотрим, - черные дыры, многие из которых наблюдались астрономами. Черная дыра представляет собой объект с плотностью настолько высокой, что пространственная кривизна и приливные силы в ее центре становятся бесконечными (это называется «пространственно-временная сингулярность», или просто «особенность» для краткости). Эта особенность окружена горизонтом событий - «поверхностью» черной дыры. Любой объект, включая свет, проваливается внутрь дыры через ее горизонт событий, но не может покинуть ее и должен двигаться в направлении центральной сингулярности. Именно поэтому этот объект называют черной дырой.

Причина в том, что под горизонтом событий радиальная координата становится времениподобной. Это означает, что радиальная координата тела внутри горизонта должна уменьшаться подобно тому, как временная координата любого тела вне черной дыры должна увеличиваться. Мы путешествуем вдоль времени, а падающий объект внутри черной дыры перемещается вдоль его радиальной координаты к сингулярности.

Могут ли быть схожие участки пространства, где все должно удаляться от этой центральной сингулярности? Физики рассмотрели и эту возможность и назвали такие объекты «белыми дырами». Мы обсудим их чуть позже.

Расстояние от центральной сингулярности до горизонта событий называется радиусом Шварцшильда и пропорционально массе черной дыры. Это не совсем расстояние в привычном понимании слова, ведь движение происходит по времени. Но не будем слишком придираться к словам, когда мы описываем черные дыры и их повадки. Величины радиусов Шварцшильда реально существующих черных дыр, как правило, весьма малы: если бы Солнце стало черной дырой , его радиус Шварцшильда был бы около 3 км. Массы черных дыр лежат в диапазоне от нескольких солнечных масс до нескольких миллиардов солнечных масс. Принимая во внимание, что радиус черной дыры пропорционален ее массе, легко оценить радиусы этих черных дыр.

Первое решение уравнений Эйнштейна, описывающее черную дыру, появилось в 1916 г. одновременно с ОТО. Тем не менее потребовалось около двух десятилетий, чтобы понять физический смысл этого решения, а полное понимание было достигнуто в 1958 г. В течение длительного времени, пока наблюдательные средства не позволяли обнаружить черные дыры, отношение к ним среди астрономов заполняло весь спектр - от полного неприятия до попыток объявить любой непонятный объект черной дырой. Лишь в конце ХХ в. лагерь сторонников черных дыр торжествовал победу: некоторые из наиболее ярых противников были вынуждены признать существование черных дыр. Сам термин «черная дыра» впервые появился в 1964 г.

Естественно, саму черную дыру наблюдать нельзя, так как она, как следует из названия, ничего не излучает. На самом деле черные дыры излучают за счет квантовых эффектов, но температура этого излучения, открытого Стивеном Хокингом, очень мала и реально обнаружить его невозможно. Например, если бы наше Солнце стало черной дырой, то температура этого излучения составляла бы всего 10 −7 К.

Черные дыры можно наблюдать более или менее непосредственно в двух случаях: либо черная дыра является частью двойной системы - в этом случае можно увидеть ее аккреционный диск (излучение от вещества, попадающего в дыру и обращающегося вокруг нее), или это сверхмассивная черная дыра, как Sagittarius A* , расположенная в самом центре нашей Галактики в созвездии Стрельца. Во втором случае мы можем увидеть собственные движения близлежащих звезд, вращающихся вокруг Sagittarius A* . На далеких расстояниях мы можем видеть черные дыры в качестве активных галактических ядер и квазаров. Недавно НАСА показало огромную концентрацию черных дыр в районе под названием Chandra Deep Field-South , сфотографированную космическим рентгеновским телескопом «Чандра» . На участке неба размером с диск Луны находится более 5000 черных дыр.

Астрономам известны черные дыры звездных масс, с массами начиная от нескольких масс Солнца, промежуточных масс порядка сотен масс Солнца и сверхмассивные черные дыры с массами от миллиона масс Солнца. Как правило, они находятся в центрах галактик; в нашей Галактике эту роль играет Sagittarius A* с массой 4 млн масс Солнца. В окрестностях нашей Галактики самая массивная черная дыра находится в центре галактики M87; ее масса составляет 6 млрд масс Солнца. А наиболее массивная из известных черных дыр имеет массу 20 млрд масс Солнца и находится в галактике NGC 4889.

Как образуются черные дыры? Естественно, черные (и белые) дыры могли появиться вместе с остальной частью Вселенной во время Большого взрыва, но все они должны были разнестись далеко за пределы космологического горизонта во время инфляции. Таким образом, у нас нет никаких шансов наблюдать дыры, образованные во время Большого взрыва. Наблюдаемые черные дыры образовались другим путем, а именно путем коллапса, т. е. быстрого сжатия массивных объектов. Очевидно, белые дыры не могли быть сформированы подобным образом, поэтому мы не можем наблюдать ни одну из них.

Черные дыры широко известны благодаря научной фантастике. Другое дело, что свойства черных дыр, описываемых фантастами, довольно далеки от того, что утверждает наука. С точки зрения теории относительности уединенная черная дыра может иметь следующие параметры: массу, электрический заряд и момент импульса. В принципе, рассматриваются черные дыры, имеющие также два нефизических параметра: магнитный заряд и так называемый параметр Ньюмена - Унти - Тамбурино. Никаких других независимых параметров черная дыра иметь не может. Это утверждение известно в теории относительности под названием «теорема о том, что черные дыры не имеют волос» (англ. no-hair theorem ) . Если на черную дыру падает тело сложной формы, например стол, то детали распределения его массы, т. е. все мультипольные моменты, начиная с квадрупольного, излучаются в виде гравитационных волн.

Все черные дыры имеют массу, так что есть только четыре возможных типа черных дыр в зависимости от наличия электрического заряда и вращения. Самые простые из них - это незаряженные невращающиеся черные дыры, описываемые решением Шварцшильда. Заряженные невращающиеся черные дыры описываются метрикой Райсснера - Нордстрёма, незаряженные вращающиеся черные дыры - решением Керра, а заряженные вращающиеся черные дыры - метрикой Керра - Ньюмена. Начнем с простейших черных дыр Шварцшильда.

6.1.1. Шварцшильдовские черные дыры

Рассмотрим вначале простейшую невращающуюся незаряженную черную дыру. В ОТО такая черная дыра описывается метрикой Шварцшильда и, соответственно, называется шварцшильдовской черной дырой. Это решение сферически симметрично и зависит только от одной радиальной координаты r . В центре при r = 0 находится сингулярность, т. е. место, в котором кривизна пространства-времени обращается в бесконечность. С сингулярностями мы уже сталкивались, говоря о Большом взрыве, Большом хрусте и Большом разрыве. Однако эта сингулярность окружена со всех сторон так называемым горизонтом событий черной дыры, имеющим радиус, пропорциональный ее массе. Этот горизонт работает как полупроницаемая мембрана. Сквозь горизонт вещество и излучение могут пройти только внутрь черной дыры, но не могут выйти наружу. Попав внутрь черной дыры, пройдя горизонт событий, любое тело обязано двигаться, уменьшая радиальную координату. Это связано с тем, что под горизонтом событий радиальная координата становится времениподобной, т. е. ведет себя так, как время в привычном для нас пространстве. Поэтому точно так же, как мы не можем двигаться против времени, тело, прошедшее горизонт событий, будет неотвратимо падать на центральную сингулярность.

Какова будет судьба тела, падающего в черную дыру? Если оно свободно падает, то с релятивистской точки зрения находится в состоянии покоя в выделенной системе отсчета. Но на него будут действовать приливные силы, которые чрезвычайно велики вблизи сингулярности. Они стремятся сжать его в тангенциальном направлении и растянуть в радиальном, сделав похожим на макаронину, которая немного толще в верхней части . Так что, если вы хотите испытать, что чувствует человек, падающий в черную дыру, не подвергая себя смертельной опасности, можете привязать гирю к вашим ногам и висеть на руках на гимнастических кольцах, как показано на рис. 6.1 .

При пролете горизонта событий ничего особенного не произойдет; вообще, с точки зрения падающего, момент пересечения телом горизонта событий никак не выделен. При подлете к центральной сингулярности приливные силы станут бесконечными. В результате тело будет разорвано на куски, куски - на кусочки, кусочки - на атомы, а атомы - на элементарные частицы.

Приливные силы пропорциональны M /r 3 , где М - масса черной дыры. Это нерелятивистское приближение, которое справедливо лишь при достаточно большом расстоянии от сингулярности. Для близких расстояний должна быть использована релятивистская формула, но необходимость ее использования означает, что приливные силы велики и падающий человек уже давно разорван; так что, пока он жив, данное приближение хорошо работает. Горизонт событий находится на расстоянии r g , где r g - радиус Шварцшильда, он же гравитационный радиус, равный \(r_{g} = 2GM/c^{2} \approx 2,95M/M_{\odot} \) км, где \(M_{\odot} \) - масса Солнца. Таким образом, если выражать расстояние до черной дыры в ее радиусах Шварцшильда, то приливная сила будет пропорциональна (r s /r ) 3 /M 2 , что означает, что приливные силы на расстоянии, равном заданному числу радиусов Шварцшильда, слабее для более массивных черных дыр.

В частности, если свободно падающий наблюдатель пересекает горизонт событий сверхмассивной черной дыры, он не почувствует ничего особенного. Но не факт, что он сможет долететь в целости до горизонта событий небольшой черной дыры.

Оценим теперь время полета внутри черной дыры - от пересечения горизонта событий до центральной сингулярности. Используем прием, столь любимый физиками-теоретиками, который называется анализом размерности. Так как время падения - кинематическая величина, оно не может зависеть от параметров падающего тела из-за принципа эквивалентности. Таким образом, оно может зависеть только от параметров черной дыры. Черная дыра Шварцшильда имеет только один параметр: массу. У нас также есть две соответствующие фундаментальные константы - гравитационная постоянная G и скорость света в вакууме с . Единственной комбинацией этих трех величин с размерностью времени является GM /c 3 . Таким образом, время падения в черную дыру будет равно \(kGM/c^{3}\approx4,93kM/M_{\odot} \) мкс, где k - некий безразмерный коэффициент. Мы получили ответ, причем в рамках ОТО, ничего не рассчитывая и не используя никаких формул. В этом состоит прелесть анализа размерности. Тут мы могли бы добавить, что величина k по порядку величины не должна сильно отличаться от единицы.

Чтобы найти ее точное значение, понадобятся и формулы, и расчеты. Величина k зависит от того, как именно тело падает, но она не может превышать π в любом случае, даже если тело - это ракета и она включит свой двигатель, пытаясь изо всех сил затормозить падение. Это предельное значение k = π не может быть получено из нерелятивистских формул; заинтересованных отошлем к задаче 17.3 в книге . Таким образом, максимальное время падения в черную дыру равно \(\pi GM/c^{3} \approx 15,5M/M_{\odot} \) мкс. Для черной дыры в центре нашей Галактики Sagittarius A* это время будет около минуты. Для самой массивной из известных черных дыр, находящейся в галактике NGC 4889, с массой около 21×10 9 солнечных масс, оно было бы около 90 часов, так что падающий наблюдатель имел бы достаточно времени, чтобы обдумать, было ли его решение прыгнуть в дыру действительно мудрым.

Время падения измеряется в системе падающего наблюдателя, т. е. по его собственным часам. Это уточнение очень важно, так как время, измеренное в разных системах отсчета, т. е. разными наблюдателями, может существенно различаться. Вблизи черной дыры гравитационное поле очень сильно и приводит к замедлению времени, так называемому гравитационному красному смещению.

Обратим внимание на то, что к сингулярности тело приближается по времени, роль которого играет координата r . Такая сингулярность называется пространственноподобной. Другими примерами такой сингулярности являются космологические сингулярности, т. е. Большой взрыв, Большой хруст и Большой разрыв. Остальные три координаты, в том числе координата, обозначаемая буквой t , вне черной дыры соответствующая времени, внутри черной дыры пространственноподобны, т. е. вдоль них можно двигаться в любом направлении. Для иллюстрации рассмотрим световые конусы падающего тела, показанные на рис. 6.2 . Напомним, что световой конус - это гиперповерхность в пространстве-времени, которая образуется при прохождении света через определенную точку. Самое главное его свойство - это то, что независимо от того, что делает объект, он не может выйти за пределы своего светового конуса. Более подробная информация приведена в разделе 1.2.8 .

Вдали от черной дыры световой конус выглядит вполне нормально: свет распространяется одинаково в любом направлении, поэтому ось светового конуса направлена вдоль оси t . Когда объект приближается к черной дыре, ее гравитация начинает притягивать свет (вспомним гравитационное линзирование). С точки зрения удаленного наблюдателя, свет распространяется быстрее в направлении черной дыры, чем от нее, и световой конус наклоняется в сторону черной дыры. На горизонте событий световой конус наклонен таким образом, что его внешний край проходит параллельно оси t . С этого момента больше невозможно избежать падения в черную дыру. Внутренний край проходит параллельно оси r . Если падающий наблюдатель углубится внутрь черной дыры, его световой конус наклоняется еще сильнее. Теперь оба его края обращены к сингулярности и направлены в противоположных направлениях вдоль оси t . Таким образом, достаточно быстро движущееся тело может двигаться в противоположном направлении оси t , оставаясь внутри своего светового конуса. Возле центральной сингулярности световой конус должен быть повернут на 90°, но эта простая аналогия не очень работает в окрестности сингулярности.

Тело, падая в черную дыру, уменьшает свою потенциальную энергию в гравитационном поле, преобразуя ее в кинетическую. На горизонте событий эта потенциальная энергия становится равной нулю. Если мы будем спускать тело в черную дыру, привязав его к веревке, вращающей при этом ось идеального генератора, мы могли бы получить энергию, равную mc 2 - полной энергии покоя тела.

Эта энергия огромна: на каждый грамм вещества приходится 90 ТДж, что составляет около 25 ГВт-час - энергия, производимая за сутки атомной электростанцией. Если бы такой процесс мог быть реализован на практике, это решило бы все энергетические проблемы человечества, а заодно и проблему мусора. Следует также отметить, что эта энергия была бы действительно «зеленой», так как единственным побочным продуктом процесса являлись бы экологически чистые гравитационные волны.

Для наблюдателя, неподвижного относительно черной дыры и находящегося бесконечно далеко (реально - более чем в 100 радиусах) от нее, время течет с обычной скоростью. По мере приближения к черной дыре время начинает замедляться и на горизонте событий полностью останавливается с точки зрения удаленного наблюдателя. Если мы окружим черную дыру сферой и через люк будем медленно стравливать трос с закрепленными на нем кварцевыми часами, то по мере приближения к черной дыре часы будут идти все медленнее и медленнее независимо от принципа их действия (естественно, кроме часов, основанных на силе тяжести, например маятниковых или песочных).

С этим эффектом связаны два расхожих мифа, одним из которых мы обязаны научно-популярной литературе, а вторым - научно-фантастической. Рассмотрим их по порядку.

Широко известен мысленный эксперимент с двумя наблюдателями, один из которых падает в черную дыру, а другой наблюдает за ним, оставаясь неподвижным. При этом утверждается, что из-за описанного выше эффекта замедления времени неподвижный наблюдатель будет видеть падающего вечно, хотя тот достигнет горизонта событий за вполне конечное время в его собственной системе отсчета. Что же на самом деле увидит неподвижный наблюдатель? За время своего падения падающее тело излучит конечное число фотонов, так как этот процесс будет происходить в его собственной системе отсчета. Поток излучения от падающего тела, достигающий неподвижного наблюдателя, с точки зрения формальной математики будет экспоненциально убывать со временем (чтобы «растянуть» конечное число фотонов на бесконечное время), т. е. яркость тела будет уменьшаться. Кроме того, длина волны этого излучения увеличится из-за гравитационного красного смещения и из-за эффекта Доплера. В результате через более-менее продолжительное время до неподвижного наблюдателя будут долетать только отдельные фотоны, излученные падающим телом, да еще и с крайне низкой энергией. Поэтому, хотя формально неподвижный наблюдатель будет вечно «видеть» падающее тело, в реальности объект будет виден конечное время. Именно потому, что свет приходит в виде квантов, через некоторое время внешний наблюдатель увидит последний фотон, испускаемый падающим телом перед пересечением горизонта. Расчеты показывают, что это произойдет довольно быстро.

В одном научно-фантастическом рассказе описана ситуация, когда гибнущая цивилизация отправила космический корабль, груженный информацией об их достижениях, к черной дыре, чтобы будущие цивилизации смогли его обнаружить и спасти, получив в подарок ценные знания. Возможно ли это? Оказывается, существует конечное время, в течение которого это возможно. По его прошествии неподвижный наблюдатель будет «видеть» (кавычки стоят по причине, описанной в предыдущем абзаце), как корабль-спасатель приближается к спасаемому в течение бесконечного времени, но никогда его не достигнет. Более того, свет от второго корабля никогда не достигнет первого, так что он даже не узнает о том, что кто-то пытался его спасти.

Запас времени на спасение должен быть того же порядка, что и время падения к центральной сингулярности, потому что нет другой доступной характерной шкалы времени. Поскольку это время очень короткое (несколько микросекунд для черной дыры солнечной массы), спасательная команда должна быть чрезвычайно эффективной.

6.1.2. Черная дыра Райсснера - Нордстрёма

Теперь рассмотрим заряженную черную дыру, т. е. черную дыру, которая помимо массы имеет еще и электрический заряд. Отношение ее заряда к массе не может превышать некую критическую величину. Заряженная черная дыра описывается метрикой Райсснера - Нордстрёма. Рассмотрим падение на нее тела. До пересечения горизонта событий все будет происходить почти так же, как и для рассмотренной выше шварцшильдовской черной дыры, за исключением наличия электростатического поля. После прохождения горизонта событий тело точно так же начнет неотвратимо падать в направлении центральной сингулярности, но с одним важным отличием. На пути к центральной сингулярности тело пересечет второй горизонт событий и окажется во внутренней области черной дыры, где радиальная координата снова является пространственноподобной. Что касается центральной сингулярности, то она будет времениподобной, т. е. в ее окрестности можно двигаться как по направлению к ней, так и от нее. Таким образом, любой, даже самый маленький электрический заряд черной дыры полностью меняет тип сингулярности в ее центре.

Теоретически, если падающее тело является, скажем, ракетой, оно может включить двигатели и изменить направление своего движения, начав двигаться с увеличением радиальной координаты. По мнению некоторых специалистов, пролетев через внутренний горизонт, оно снова попадает в область, где радиальная координата времениподобна, и теперь будет увеличиваться, т. е. тело окажется внутри белой дыры, через горизонт которой оно и вылетит наружу. А куда, собственно, оно вылетит? Ответа на этот вопрос никто дать не в состоянии. Непонятно ни в какой точке, ни в какой момент времени, ни вообще в какой вселенной это произойдет. Однако любителей путешествия в неизведанное ожидает одна проблема. Внутренний горизонт черной дыры с разумными с астрономической точки зрения параметрами находится слишком близко к сингулярности, и бросившийся в черную дыру будет разорван еще до того, как его пересечет. Более того, сама идея о том, что внутренний горизонт можно пересечь изнутри, является спекулятивной.

6.1.3. Вращающаяся черная дыра Керра

Последний тип черных дыр, которые мы рассмотрим, - это незаряженные, но вращающиеся черные дыры, описываемые метрикой Керра . Так как большинство астрономических объектов вращаются, это, как полагают, наиболее распространенный тип черных дыр. Как и черная дыра Райсснера - Нордстрёма, черная дыра Керра имеет ограничение. Ее момент импульса при заданной массе не должен превышать критического значения, определяемого ее массой.

В этом случае центральная сингулярность будет окружена сферическим горизонтом событий. Вокруг этого горизонта будет располагаться еще одна поверхность, называемая пределом стационарности. Она имеет форму сплюснутого эллипсоида вращения и касается горизонта событий в точках, лежащих на оси вращения. Пространство между двумя этими поверхностями называется эргосферой. Доказано, что любое тело, попавшее в эргосферу, не может быть неподвижно относительно удаленного наблюдателя - оно обязано вращаться в ту же сторону, что и черная дыра. Вращающиеся в эргосфере тела могут иметь отрицательную полную энергию с учетом энергии покоя. Поэтому тело, залетевшее в эргосферу, может распасться на два тела, одно из которых имеет отрицательную энергию, а второе, по закону сохранения энергии, будет иметь большую энергию, чем исходное тело.

Если развивать идею решения энергетическо-экологических проблем при помощи черных дыр, то можно направить в эргосферу черной дыры контейнер с мусором. Часовой механизм в заданное время откроет контейнер и выбросит мусор на орбиту с отрицательной полной энергией. Ускорившийся контейнер вылетит из эргосферы, и его кинетическая энергия может быть использована в интересах народного хозяйства. Таким образом, можно получить энергию, большую чем mc 2 , где m - масса выброшенного мусора. Откуда же берется дополнительная энергия? Мусор, выброшенный в эргосферу, вращается в сторону, противоположную направлению вращения черной дыры. Провалившись внутрь черной дыры, он уменьшит ее момент импульса. Таким образом, энергия будет получена за счет замедления вращения черной дыры. Такой процесс был предложен Роджером Пенроузом.

Свойства световых конусов вблизи черной дыры Керра показаны на рис. 6.3 . В отличие от сферически-симметричной черной дыры Шварцшильда, черная дыра Керра имеет избранное пространственное направление - ее ось вращения и направление этого вращения. Пространство вокруг черной дыры Керра тоже затягивается в это вращение. Поэтому световые конусы наклоняются не только к центру, но и в направлении вращения. Мы не можем изобразить их на двумерном рисунке, как мы делали это на рис. 6.2 для шварцшильдовской дыры, отказавшись от явного изображения оси времени. По этой причине на рис. 6.3 мы изображаем экваториальное сечение черной дыры Керра, помещаем туда некоторое количество пробных частиц (черных точек), каждая из которых синхронно вспыхивает, становясь вершиной своего светового конуса. Свет от каждой вспышки расходится в стороны, образуя расширяющуюся оболочку или фронт разбегающейся волны. Через некоторое время (в системе отсчета удаленного наблюдателя) мы фиксируем круги, образованные пересечением экваториальной плоскости и фронтов этих волн, как границы белых кружков, изображенных на рис. 6.3 . Самая близкая аналогия - водоворот, на который смотрят сверху. В него бросают камешки и наблюдают, как от места падения расходятся круги на поверхности воды.

Посмотрите внимательно на рис. 6.3 . Вы заметите, что круги расположены по-разному по отношению к точкам. Представьте себе большой круг вокруг центральной сингулярности, проходящей через точку. С физической точки зрения возможны три принципиально различные ситуации: а) круг включает в себя точку; б) круг не включает в себя точку, но пересекает большой круг; в) круг не включает в себя точку и не пересекает большой круг. В первом случае пробная частица может находиться в покое или двигаться в любом направлении; во втором случае пробная частица должна двигаться, но все еще может не приближаться к черной дыре и избежать падения в нее; в третьем случае пробная частица должна двигаться по направлению к сингулярности. Случай а имеет место далеко от черной дыры вне ее эргосферы, снаружи от предела стационарности; случай б имеет место в эргосфере; случай в происходит внутри горизонта событий .

Решение Керра принципиально отличается от решений Шварцшильда и Райсснера - Нордстрёма одним обстоятельством. Последние описывают не только черные дыры, но и пространство-время вокруг любых сферически-симметричных массивных объектов в вакууме, в том числе электрически заряженных. Например, гравитационное поле невращающейся незаряженной одиночной звезды может быть описано решением Шварцшильда. Можно ожидать, что решение Керра аналогично описывает гравитационное поле снаружи вращающейся звезды, но это не так. Причины этого слишком сложны для обсуждения здесь.

Тем, кто заинтересовался черными дырами (и не боится сложных математических формул), рекомендуем прочитать прекрасную статью «Решение Керра - Ньюмена» (Kerr-Newman metric ) на Scholarpedia .

6.2. Голые сингулярности

А что же произойдет, если черная дыра получит слишком большой заряд или слишком большой момент импульса? Тогда это будет не черная дыра, а куда более экзотический объект - голая особенность (naked singularity ). Что же это такое? Внутри черной дыры Райсснера - Нордстрёма находится времениподобная сингулярность, скрытая двумя горизонтами событий. Если же горизонтов нет, то такая времениподобная сингулярность называется голой особенностью. В какой-то степени это граница нашего мира. К ней можно подлететь сколь угодно близко и вернуться обратно, так как нет горизонта, который бы этому помешал. Именно такие сингулярности возникают в решениях Райсснера - Нордстрёма и Керра при заряде или моменте импульса, превышающих критические значения. Горизонты исчезают, и вся структура пространства-времени преображается.

Можно считать, что каждая голая особенность - это окно в неизвестный мир. Мы не имеем никакой возможности предсказать, что именно оттуда может появиться. Могут ли оттуда явиться воинственные пришельцы на летающих тарелках или черти с вилами? В принципе, это не исключено, но завоевать наш мир им не удастся из-за бесконечно больших приливных сил в его окрестности. И летающие тарелки, и вилы, и пришельцы с чертями будут разорваны на элементарные частицы.

Таким образом, голые особенности, если таковые существуют, должны в основном производить свет и элементарные частицы. Каков источник этого вещества и излучения? Никто не знает. Романтик мог бы назвать голые особенности дверями между нашим миром и каким-то другим, по крайней мере черным ходом или форточкой. Другими словами, голые особенности - если они существуют - двусторонние порталы в другие миры, в отличие от черных дыр, которых можно назвать односторонними порталами.

Однако существование голых особенностей не признается многими физиками-теоретиками и математиками. Математики вообще не любят работать с решениями, имеющими особенности. Возражения физиков сводятся к двум основным пунктам. Во-первых, мы не знаем, будут ли выполняться законы физики в том виде, какими мы их знаем, возле сингулярности. Во-вторых, мы не можем знать граничные условия на них, и присутствие таких «окон» не дает нам возможность предсказывать будущее состояние Вселенной по начальным условиям.

Вторая причина привела известного физика Роджера Пенроуза к формулировке Принципа космической цензуры (Cosmic Censorship Principle ). Согласно этому принципу, все сингулярности, образовавшиеся при коллапсе, должны быть скрыты от удаленного наблюдателя горизонтами событий.

Этот принцип является всего лишь гипотезой. Вдобавок он не отменяет существования голых особенностей, возникших вместе с остальной Вселенной в момент Большого взрыва. Однако уже знакомая вам инфляция разнесла бы такие сингулярности далеко за пределы нашего космологического горизонта. Поэтому Принцип космической цензуры, если он справедлив, практически означает, что в доступной нашему наблюдению части Вселенной нет голых особенностей.

Многие решения ОТО содержат голые особенности. Вопрос в том, являются ли эти решения физическими и имеют ли какое-то отношение к реальности. В принципе, часть объектов, отождествляемых с черными дырами, могла бы быть голыми особенностями, но никаких свидетельств в пользу этого нет.

6.3. Кротовые норы

Еще один вид экзотических объектов - кротовые норы. В последнее время к ним стали также применять термин «червоточина». В них можно влететь в одном месте, а вылететь совершенно в другом. За это качество они активно эксплуатируются писателями-фантастами, желающими как-то обойти ограничение скорости света, практически ставящее крест на межзвездных путешествиях, не говоря уже о межгалактических. С точки зрения внешнего наблюдателя, кротовая нора неотличима от шварцшильдовской черной дыры. Вход в кротовую нору, как правило, имеет вид черной дыры, а выход - белой. Такие объекты могли быть созданы только вместе со Вселенной во время Большого взрыва, а значит, обнаружить их нам, скорее всего, не удастся. В этом смысле они чем-то похожи на рассмотренные выше черные дыры Райсснера - Нордстрёма, но отличаются от них тем, что, пролетая кротовую нору в наиболее часто рассматриваемом ее варианте, тело пересекает не четыре, а только два горизонта событий, двигаясь вдоль времениподобного пути . Это, в частности, означает, что кротовая нора допускает движение только в одном направлении. Однако для всех физически разумных вариантов кротовой норы приливные силы настолько велики, что исключают возможность переноса каких-либо макроскопических объектов.

Вопрос

Если человек, упавший в черную дыру, посветит фонариком наружу вдоль радиуса, сможет ли этот свет увеличить свою радиальную координату?

Ответ

Воспользуемся следующей аналогией: человек, который выпал из летящего самолета во время падения, бросил свои ключи вверх. Могут ли эти ключи взлететь? Это довольно трудно себе представить. Они также будут падать вниз, но медленнее, и ударятся о землю вскоре после их владельца. То же самое будет происходить со светом - он все равно попадет в центральную особенность, но немного позже, чем человек с фонариком. При этом, с точки зрения падающих, свет фонарика и связка ключей будут от них удаляться. Вспомнив, что границы светового конуса представляют собой траекторию света, мы можем понять этот процесс из рис. 6.2

Внутренняя структура черной дыры Керра (внешний и внутренний горизонты, особенности) является весьма сложной, и мы не описываем ее в этой книге. В любом случае, не упав внутрь горизонта событий, мы не увидим ничего из находящегося внутри.

Есть разные варианты кротовых нор, но среди них нет общепринятого, поэтому мы описываем один из них.

Концепция кармы в таких религиях, как индуизм и буддизм, говорит о том, что наши действия в настоящем влияют на нашу жизнь в будущем – то есть мы можем оглянуться на свои прошлые решения и сделать выводы о том, как они привели нас к нашей нынешней ситуации. Конечно, эту теорию можно воспринимать скептично, а то и вообще отрицать её. Тем не менее, мы все равно порой видим взаимосвязь между совершением добрых дел и вознаграждением, совершением плохих поступков и наказанием, хотя мы вполне можем думать, что это всего лишь вопрос вмешательства человека, а не какого-то универсального действия. Итак, давайте посмотрим на универсальные правила того, как работает Вселенная.

● Действия значат больше, нежели слова

У вас могут быть самые лучшие намерения, и вы считаете, что это делает вас достойным человеком. Однако это не всегда так. Мало просто вынашивать хорошие мысли в голове, их нужно применять на практике.

● Всё имеет значение

Обычно в качестве примера приводится эффект бабочки. Это позволяет продемонстрировать то, как, казалось бы, несущественные поступки могут иметь долгосрочные последствия. Вы и сами можете видеть, насколько важны все ваши действия. Самые крохотные проявления способны оказать огромное влияние на окружающий вас мир. Взаимосвязанность действий — это один из основных принципов того, как работает Вселенная.

● Признание нашего прошлого

Чтобы двигаться вперед и улучшать себя и свою жизнь, вы должны быть готовы проанализировать свои прошлые действия. Простите себя за свои проступки и избегайте повторения этих ошибок. Рост начинается тогда, когда вы понимаете и принимаете его необходимость.

● Возврат инвестиций

Если вы задаётесь вопросом, почему мир не дает вам никакого позитива, прежде всего подумайте о том, даете ли вы миру какой-либо позитив. Нет никакого смысла в . Честно говоря, это просто эгоистично – ждать, что вам что-то подарят просто так. На самом деле, Вселенная работает, как бумеранг.

● Пребывание в настоящем

Прошлое уже не в вашей власти, и вами не контролируется. А вот будущее вы всё же можете немного определить, но только если сосредоточитесь на настоящем. Когда вы присутствуете в текущем моменте, вы улучшаете ваше будущее «я».

● Готовность к изменению

Упрямство и негибкость ничего не сделают для улучшения вашей жизни. Вы должны быть готовы признать, что допустили ошибки, и проявлять желание стать лучше. Не закрывайте глаза на собственные промахи.

● Позитивность

Попробуйте осознать, сколько радости присутствует в нашем мире, и начните принимать верные решения. Если вы чувствуете себя подавленно, немедленно напомните себе, что позитивное мышление может значительно улучшить ваши жизненные обстоятельства и восприятие происходящего. не работает на негативе!

● Ответственность

Безусловная ответственность за ваши действия – один из величайших законов Вселенной. С каждым своим принятым решением вы будете видеть их долгосрочные последствия. Что бы не произошло в дальнейшем, вы сможете правильно понять, что вызвало те ли иные события.

● Позвольте миру «работать» по его законам

Когда мы легко разочаровываемся, это может быть связано с тем, что мы думаем, что мир нам что-то должен. Жизнь не является по своей природе справедливой или несправедливой. Жизнь – это просто жизнь. Качество нашей жизни определяется не внешними факторами, а тем, как мы их воспринимаем. Отпустите те вещи, которые уже отслужили своё, или находятся вне нашего . Вы не всегда сможете повлиять на обстоятельства. Даже если поймете, как работает Вселенная. Так что это стоит просто принять.

● Не сдавайтесь

Вы должны быть готовы ждать. Вы никогда не знаете, насколько вы близки к победе. А когда вам особенно сложно и хочется опустить руки, скорее всего, переломный момент к лучшему уже совсем близко.

Эти принципы работы Вселенной не предназначены для того, чтобы сделать человеческую жизнь тягостной. Они, напротив, помогают людям лучше контролировать свою жизнь и понимать последствия всех своих действий. Когда вы осознаёте, что ваши решения определяют ход вашей жизни, вы захотите постоянно поступать как можно лучше, честнее и справедливее.