Описание плоскости белого листа бумаги. Механическая прочность и деформационные свойства бумаги. Физические свойства бумаги

Следующая группа печатных свойств - это механические свойства бумаги, которые можно подразделить на прочностные и деформационные. Деформационные свойства проявляются при воздействии на материал внешних сил и характеризуются временным или постоянным изменением формы или объема тела. Основные технологические операции полиграфии сопровождаются существенным деформированием бумаги, например: растяжению, сжатию, изгибу. От того, как ведет себя бумага при этих воздействиях, зависит нормальное (бесперебойное) течение технологических процессов печатания и последующей обработки печатной продукции. Так, при печатании высоким способом с жестких форм при больших давлениях бумага должна быть мягкой, то есть легко сжиматься, выравниваться под давлением, обеспечивая наиболее полный контакт с печатной формой.

Мягкость бумаги связана с ее структурой, то есть с ее плотностью и пористостью. Так крупнопористая газетная бумага может деформироваться при сжатии до 28%, а у плотной мелованной бумаги деформация сжатия не превышает 6-8%. Если бумага предназначена для отделки тиснением, то целью становится, остаточная деформация, а показателем качества является ее необратимость, то есть устойчивость рельефа тиснения.

Для офсетной печати на высокоскоростных ротационных машинах очень важными являются прочностные характеристики бумаги, а именно: прочность на разрыв, излом, стойкость к выщипыванию, влагопрочность. Прочность бумаги зависит не от прочности отдельных компонентов, а от прочности самой структуры бумаги, которая формируется в процессе бумажного производства. Это свойство характеризуется обычно разрывной длиной в метрах или разрывным усилием в ньютонах. Так для более мягких типографских бумаг, разрывная длина составляет не менее 2500 м, а для жестких офсетных, эта величина возрастает уже до 3500 м и более.

Бумаги, предназначенные для плоской печати, должны иметь минимальную деформацию при увлажнении, так как по условиям технологии печатного процесса, они соприкасаются увлажненными поверхностями. Бумага - материал гигроскопичный. При увеличении влажности ее волокна набухают и расширяются, главным образом по диаметру; бумага теряет форму, коробится и морщится, а при высушивании происходит обратный процесс: бумага дает усадку, в результате чего меняется формат. Повышенная влажность резко снижает механическую прочность бумаги на разрыв, бумага не выдерживает высоких скоростей печатания и рвется. Изменение влажности бумаги в процессе многокрасочной печати приводит к несовмещению красок и нарушению цветопередачи.

Для повышения влагостойкости бумаги в состав бумажной массы при изготовлении добавляют гидрофобные вещества (эта операция называется проклейкой в массе) или же проклеивающие вещества наносятся на поверхность уже готовой бумаги (поверхностная проклейка). Высоко проклеиваются офсетные бумаги и особенно те из них, которые при использовании подвергаются резким изменениям климатических условий или запечатываются во много краскопрогонов, например, картографические бумаги.

Способы измерения механических свойств бумаги представлены в таблице 15.

Таблица 15 - Определение механических свойств бумаги

Свойство

Определение

Способ измерения

Прочность на излом

Прочность на излом выражается числом двойных перегибов полоски бумаги под углом 180°, вызывающих ее разрыв.

Измеряется в машинном и поперечном направлениях на фальцере. Рабочая часть прибора представляет собой устройство для изгиба полосок бумаги размером 15 Ч 100 мм с счетчиком количества двойных перегибов.

Разрывная длина или прочность на разрыв

Характеристикой прочности бумаги на разрыв является разрывное усилие Q. Это усилие, необходимое для разрыва полоски бумаги шириной 15 мм. На шкале динамометра его отсчитывают в кгс и переводят в Ньютоны (1 кгс = 10 н).

Разрывная длина - это расчетная длина такой полоски бумаги шириной 15 мм, которая, будучи подвешена за один конец, разрывается под действием собственного веса.

Измеряется на динамометре - разрывной машине.

Прочность поверхности к выщипыванию

Краска для испытания на выдергивание наносится на бумагу с помощью испытательной печатной машины Пруфбау.

Во время испытания скорость печати непрерывно повышается. Измеряется значение скорости, необходимое для выдергивания частиц.

Лекция 6

Физические свойства бумаги

К физическим свойствам бумаги относится масса метра квадратного, толщина, плотность, пористость, пухлость.

Для определения массы метра квадратного бумаги вырезают из бумаги прямоугольник соответствующих размеров, взвешивают его, а затем пересчитывают на массу одного метра квадратного.

Плотность бумаги определяется как отношение массы образца бумаги к объему (г/см3).

Толщина бумаги обычно составляет от 0,03 до 0,25 мм. Картон – до 3 мм. Определение толщины бумаги проводят при помощи толщинометра. В практических целях берут 10 листов бумаги, измеряют их толщину и делят на 10.

Пористость бумаги – это отношение величины пор к общему объему бумаги. Пористость выражается в %. Так как бумага изготавливается из волокна различных размеров, то в ней возможно образование следующих видов пор:

§ сквозные;

§ тупиковые;

§ закрытые;

§ кольцевые.

Определение пористости осуществляется при помощи различных порометров.

На практике пористость определяют по формуле:

Пор = (1-d/1,5)*100%, где d – плотность бумаги.

Пористость различных видов бумаг колеблется в пределах 30-70%: калька – 30%, газетная бумага – 70%.

При помощи пористости можно регуировать скорость высыхания некоторых видов полиграфической краски.

На практике важней не только пористость, но и распределение пор по размерам. Чем меньше различие между самой маленькой и самой большой порами, тем выше будет качество избражения (узкое распределение пор по размерам).

Пухлость – величина, обратная плотности; единица измерения см3/г. Величина пухлости часто приводится в сертификатах на бумагу иностранных производителей.

… зависят от:

§ направление распределения волокна в бумажном листе (анизотропия). При продольном направлении прочность волокна выше;

§ прочности индивидуального волокна. Прочность индивидуального волокна зависит от способа получения, породы древесины, степени помола;

§ наличия водородных связей. Если в соединении есть N, O, F, то могут образоваться водородные связи. Водородные связи образуются между молекулами, которые имеют в своем составе атомы N, O или F и атомы Н. Водородные связи сами по себе очень слабые, но в молекуле целлюлозы содержатся миллионы гидроксильных групп и поэтому суммарный эффект водородных связей способен обеспечить прочность бумажного листа. Можно провести простой эксперимент, доказывающий влияние водородных связей на прочность бумаги. Для этого бумажный лист необходимо замочить в воде, спирте и минеральном масле. В первом случае прочность бумаги – наименьшая, в последнем – наибольшая. В 1-м случае молекулы воды разрушат водородные связи между молекулами целлюлозы. В последнем случае минеральное масло не имеет в своем составе N, O, F и поэтому прочность бумаги не изменится. Если бумагу начать высушивать, то между молекулами целлюлозы вновь образуются водородные связи и прочность бумаги вырастет.


§ влажность окружающего воздуха. Поэтому все измерения свойств бумаги проводят в стандартных условиях при относительной влажности окружающего воздуха 60-65%.

На практике для характеристики прочности бумаги используют ряд следующих показателей:

1) нулевая разрывная длина;

2) разрывная длина;

3) относительное удлинение.

РАЗРЫВНАЯ ДЛИНА – косвенная величина, которая характеризует длину полоски бумаги, которая будучи подвешена за один конец, разорвется под действием собственной массы. Разрывную длину измеряют в метрах (реже км). Для большинства полиграфических бумаг разрывная длина должна быть больше или равна 3000-3500 мм.

На практике разрывную длину определяют на разрывной машине путем разрыва полоски бумаги в определенных условиях. Затем разрывной груз, при котором произошел разрыв, по формуле пересчитывают в разрывную длину. Для определения разрывной длины зажимы машины отдаляются друг от друга на 100 мм.

Если зажимы разрывной машины максимально сближены, то определяют НУЛЕВУЮ РАЗРЫВНУЮ ДЛИНУ. Она характеризует прочность индивидуальных волокон. Так как нулевая разрывная длина выше, чем разрывная длина, то прочность индивидуальных волокон выше прочности бумажного листа.

ОТНОСИТЕЛЬНОЕ УДЛИНЕНИЕ РАСТЯЖИМОСТЬ)

Относительное удлинение = (Dl/l)*100% (1)

При разрыве бумаги она удлиняется. Это удлинение опредлеяется как относительное удлинение при разрыве и вычисляется по формуле 1. Величина относительного удлинения для бумаги составляет 1-5%. Из теории сопротивления материалов известно: чем выше растяжимость, тем стабильнее прочностные свойства материалов, работающих при напряжении. Таким образом, чем выше растяжимость, тем ниже обрывность бумаги в печати.

На практике для повышения растяжимости стараются поднять относительную влажность бумаги с 5-6% до 7-8%.

На практике, кроме показателя разрывной длины и относительного удлинения используют следующие виды испытаний бумаги:

§ сопротивление излому;

§ сопротивление раздиранию;

§ сопротивление кромки листа;

§ сопротивление продавливанию;

§ испытание на сжатее кольца;

§ определение жесткости при статическом изгибе;

§ сопротивление расслоению;

§ потеря механической прочности при старении бумаги.

1. СОПРОТИВЛЕНИЕ ИЗЛОМУ определяется на полоске бумаги при ее натяжении. При этом образец бумаги перегибается вперед-назад на угол 180. Одно движение вперед-назад называется двойным перегибом , а сопротивление излому измеряется в ч. д. п. – числе двойных перегибов.

Большинство полиграфических бумаг характеризуется сопротивлением излому больше или равно 1012 ч.д.п. И только картографические виды бумаги и так называемые «специальные» виды бумаги характеризуются сопротивлением излому больше или равно 40-100 ч.д.п.

2. СОПРОТИВЛЕНИЕ РАЗДИРАНИЮ характеризуется силой, вызывающей раздирание предварительно надрезанной по кромке бумаги до определенной ее длины. Испытанию подвергают 4 образца бумаги, которые предварительно надрезают по кромке, а затем разрезают ножом маятникового типа.

Для печатных видов бумаги этот показатель используется в стандарте на газетную бумагу.

К близким по сущности к сопротивлению раздиранию относится показатель СОПРОТИВЛЕНИЕ НАДРЫВУ КРОМКИ ЛИСТА. Он характеризуется силой, которую надо приложить, чтобы надорвать кромку листа. Этот показатель важен для полиграфического картона, используемого для изготовления игральных карт.

Характеризует прочность бумаги, зажатой по кольцу , усилию, направленному перпендикулярно ее поверхности. В основном это показатель используется для оценки картонов.

Определение жесткости при статическом изгибе заключается в определении силы, приложенной к свободному концу консольно закрепленного образца картона и изгибающей его на определенный угол.

Испытание на сжатие кольца – предусматривает измерение разрушающего усилия при осевом сжатии поставленной на ребро и свернутой в кольцо полоски бумаги.

Испытание сопротивления к расслаиванию : заключается в определении силы, необходимой для расслоения испытуемого образца.

Определение потери механической прочности при старении . Заключается в выдерживании образца бумаги в воздушном термостате при температуре 150 градусов определенное время и измерении стандартных показателей прочности. Потерю прочности выражают в процентах от исходной. А наибольшей чувствительностью к старению обладает показатель сопротивления излому. Для характеристики старения бумаги по аналогичной методике определяют потери в белизне.

По способу печати бумага обычно подразделяется на офсетную, типографскую и для глубокой печати. Печатные свойства бумаги - это свойства, определяющие ее поведение до печати (т.е. прохождение ее через бумагопроводящую систему печатной машины), во время печати (взаимодействие бумаги с печатной краской и процесс закрепления изображения) и после печати (операции фальцовки, брошюровки, подрезки, а также эксплуатационные характеристики готовой продукции). Все эти свойства, можно объединить в следующие группы:

Физические: гладкость, толщина и масса 1 м2, плотность и пористость;

Оптические: белизна, непрозрачность, лоск (глянец);

Показатели однородности структуры, бумаги: равномерность просвета, разносторонность;

Механические (прочностные и деформационные): прочность поверхности к выщипыванию, разрывная длина или прочность на разрыв, прочность на излом, влагопрочность, мягкость и упругость при сжатии и т.д.;

Сорбционные: гидрофобность (стойкость к действию воды), впитывающая способность растворителей печатных красок.

Физические свойства бумаги:

Гладкость бумаги, микрорельеф ее поверхности определяет "разрешающую способность" бумаги - т.е. способность передавать без разрывов и искажений тончайшие красочные линии, точки и их комбинации. Это одно из важнейших печатных свойств бумаги. Чем выше гладкость бумаги, тем больше контакт между ее поверхностью и печатной формой, тем меньшее давление нужно приложить при печатании, тем выше качество изображения. Гладкость бумаги определяется в секундах с помощью пневматических приборов или с помощью профилограмм, дающих наглядное представление о поверхности бумаги. Различные способы печати предъявляют к бумаге разные требования по гладкости. Так каландрированная типографская бумага должна иметь гладкость от 100 до 250 секунд, а офсетная бумага той же степени отделки может иметь гладкость гораздо ниже - 80-150 секунд. Бумага для глубокой печати отличается повышенной гладкостью, которая составляет от 300 до 700 секунд. Газетная бумага не может быть гладкой из-за пористости. Существенно улучшает гладкость поверхности нанесение любого покровного слоя, - поверхностная проклейка, пигментирование, мелование (которое, в свою очередь, может быть различным, - односторонним и двухсторонним, однократным, многократным и т.д.).

Пористость. Она непосредственно влияет на впитывающую способность бумаги (то есть на ее способность воспринимать печатную краску) и вполне может служить характеристикой структуры бумаги. Бумага является пористо-капиллярным материалом, при этом различают макро- и микропористость. Макропоры, или просто поры - это пространства между волокнами, заполненные воздухом и влагой. Микропоры, или капилляры - мельчайшие пространства неопределенной формы, пронизывающие покровный слой мелованных бумаг, а также образующиеся между частичками наполнителя или между ними и стенками целлюлозных волокон у немелованных бумаг. Капилляры есть и внутри целлюлозных волокон. Все немелованные, не слишком уплотненные бумаги (например, газетная) - макропористые. Общий объем пор в таких бумагах достигает 60% и более, а средний радиус пор составляет около 0.16-0.18 мкм. Такие бумаги хорошо впитывают краску, благодаря своей рыхлой структуре. Мелованные бумаги относятся к микропористым (капиллярным) бумагам. Они тоже хорошо впитывают краску, но уже под действием сил капиллярного давления. Здесь пористость составляет всего лишь 30%, а размер пор не превышает 0.03 мкм. Остальные бумаги занимают промежуточное положение. Плотность печатных бумаг колеблется, в среднем, от 0.5 г./ см3 для рыхлых (пористых) и до 1.35 г./см3 для высокоплотных капиллярных бумаг.

Как свойства бумаги (в равной степени и картона) могут влиять на обработку оттисков после печати — разрезание оттисков, брошюровочно-переплетные и отделочные процессы — а значит, и на качество изделий? Ответы — в этой статье.

Характеристика качества бумаги (картона) для печати — показатель комплексный, слагающийся из следующих групп:

  • качественные признаки (их называют фундаментальными), характеризующие бумагу как материал (масса 1 м 2 , толщина, гладкость, сорбционные свойства, оптические характеристики и т. д.);
  • печатно-технологические свойства , определяющие поведение материала при переработке в изделие;
  • функциональные свойства , определяющие потребительские качества изделия (долговечность, способность сохранять упаковываемую продукцию и т. д.).

Фундаментальные характеристики бумаги оцениваются лабораторными приборами. Их можно считать объективными характеристиками.

Свойства, важные при переработке , оцениваются как объективными показателями (стойкость поверхности к выщипыванию, величина впитывания масла, деформация при намокании и пр.), так и определяемыми практикой производства (разносторонность, степень анизотропии свойств, отмарывание, деформация в процессе печати и пр.). Последние могут оцениваться с помощью приборных методов измерения, но их проявление во многом зависит от особенностей оборудования и практических навыков печатника.

Свойства изделия также оцениваются совокупностью объективных и субъективных показателей.

Для получения желаемого результата при переходе к изделию нужно максимально четко сформулировать требования к материалу, чтобы удовлетворить условиям переработки или задать их в соответствии с параметрами материала и требованиями к изделию.

После печати

Как свойства бумаги (в равной степени и картона) могут влиять на обработку оттисков после печати, а значит, и на качество изделий?

В качестве послепечатных процессов рассматриваются: разрезание оттисков, брошюровочно-переплетные и отделочные процессы .

Разрезание листов может производиться из рулона, если печать ведется на ролевой печатной машине. При листовой же печати осуществляется подрезка печатных листов или разрезание оттисков на экземпляры. В ряде случаев, например при производстве упаковки или этикетки, применяется высечка из бумажного полотна.

Брошюровочно-переплетные процессы — это технологические операции:

  • обработки оттисков (разрезание, фальцовка, приклейка к тетрадям форзацев и вклеек);
  • изготовления книжных блоков (скрепление листов — шитье нитками или проволокой, клеевое скрепление, обработка блока — подготовка его для вставки в крышку или крытья обложкой);
  • изготовления брошюр в мягкой обложке.

Отделочные процессы применяются для придания печатной продукции новых эксплуатационных свойств и лучшего вида. К ним относятся:

  • припрессовка пленки;
  • лакирование;
  • аппликация;
  • биговка;
  • тиснение;
  • высечка;
  • перфорация и др.

Очень часто при выпуске полиграфической продукции процессом, определяющим качество и стоимость изделия, оказывается не сама печать, а последующие брошюровочно-переплетные и отделочные работы. Особенно это проявляется при производстве малотиражной печатной продукции.

Допечатные и печатные процессы часто требуют гораздо меньших затрат труда и времени, чем брошюровочно-переплетные и отделочные. Дефекты же, допустимые в послепечатной обработке, в значительной степени определяют качество печатного изделия и могут свести на нет все усилия печатников.

Оттиски — не бумага!

В послепечатную отработку поступает, собственно, уже не бумага, а печатные оттиски, которые отличаются по свойствам от исходной бумаги в той степени, в какой процесс печати и наносимые на ее поверхность печатные краски и увлажняющие растворы, а также процесс сушки изменяют их. Поэтому рассматривать влияние свойств бумаги на послепечатные операции следует с учетом изменения этих свойств в процессе печати.

В наибольшей степени на послепечатные процессы оказывают влияние следующие свойства:

  1. Сорбционная способность бумаги, определяющая влагопоглощение (в том числе и из окружающего воздуха), впитывание водных растворов и растворов клеев, красок, увлажняющих растворов, лаков.
  2. Характеристики структуры бумаги:
    • геометрические (плотность как отношение толщины к массе бумаги площадью 1 м 2 , шероховатость поверхности, пористость);
    • анизотропия свойств (различие свойств машинного, т. е. совпадающего с направлением наибольшей ориентации волокон бумаги, и поперечного направлений);
    • деформационные и их изменение при изменении влажности бумаги.
  3. Однородность бумаги не является отдельной группой свойств, т. к. определяется стабильностью как сорбционных свойств, так и характеристик структуры, но ввиду основополагающего в ряде случаев влияния на качество изделия выделена и рассматривается как отдельная характеристика бумаги.

Каким образом изменяются эти свойства в процессе печати?

1. Сорбционная способность по отношению к влаге или композициям, используемым для обработки оттисков, изменяется из-за нанесения на поверхность бумаги печатной краски и определенного «экранирования» поверхности и в целом структуры листа.

На участках с печатной краской снижается адгезионная способность клея по отношению к бумаге. Поэтому во избежание проблем с качеством склейки необходимо, чтобы под склейку не попадали запечатанные поверхности бумаги.

Односторонняя печать вследствие изменения склонности поверхности бумаги поглощать влагу, содержащуюся в воздухе, может вызвать скручивание печатных листов или изделий. Для устранения скручивания применяют выдерживание стапелей с бумагой под чехлами для прохождения релаксационных процессов, иногда пачки оттисков прокладывают деревянными щитами и используют их стяжку.

Участки, покрытые краской, отличаются после лакирования большим глянцем из-за меньшего провала лака в структуру бумаги.

2. Наибольшее воздействие на структуру бумаги оказывает традиционная офсетная печать с увлажнением (здесь мы опускаем специальные виды печати, например металлографию, после которой бумага в результате оказываемого на нее действия печатной пары уплотняется, и поверхность ее на пробельных участках становится лощеной).

Бумага, основу которой составляют растительные материалы (древесная или хлопковая целлюлоза, древесная масса, крахмал), очень чувствительна к перепадам своего влагосодержания. Увлажнение бумаги приводит к значительным (на 10-30%) изменениям поперечных размеров волокон древесной целлюлозы, ослабляются межволоконные связи, происходит релаксация скрытых в бумажном полотне внутренних напряжений, а при более значительном увлажнении возникают новые. В результате уменьшается гладкость бумаги, поверхность коробится, оттиски скручиваются. Последующая сушка фиксирует уже новое состояние структуры. Как правило, менее плотной, более шероховатой и пористой.

Увлажнение с последующим высушиванием изменяет и деформационные свойства бумаги. Происходит усадка бумажного полотна (особенно в направлении, перпендикулярном преимущественной ориентации волокон в нем). Повышается гидрофобность, т. е. уменьшается восприимчивость по отношению к воде.

Сушка без увлажнения, которая используется при всех остальных видах печати (глубокой, сухом офсете, флексографии и др.), также может вызывать необратимые изменения.

Все указанные метаморфозы свидетельствуют о том, что на послепечатные операции поступают оттиски, представляющие собой материал, который может значительно отличаться по свойствам от исходного.

Сорбционная способность бумаги

Одна из фундаментальных характеристик бумаги — способность поглощать влагу (гидрофильность) или маслоподобные составы (олеофильность).

Эти показатели оцениваются либо количеством поглощаемого вещества на 1 м 2 поверхности, либо по скорости поглощения (времени проникновения раствора на обратную сторону бумаги). Есть методы, предназначенные для определения способности к маслопоглощению по длине масляного следа, возникающего на поверхности бумаги при растекании (растискивании) по ней капли масла: чем короче след, тем больше склонность к поглощению масла.

Гидрофильность бумаги влияет на ее равновесную влажность, устанавливающуюся при данной относительной влажности воздуха. Обычно равновесная влажность бумаги при относительной влажности 50-60% находится в пределах 5-6%, но возможны и отклонения в ту или другую сторону. Например, бумага с высоким содержанием древесной массы в указанных условиях может иметь влажность до 7%. Некоторые виды мелованной бумаги, наоборот, имеют более низкую влажность вследствие изолирующего влияния покрытий.

Влажность листов определяет относительную влажность воздуха в стопе, которая для оптимальных условий печати должна составлять 45-55%.

Влажность (влагосодержание) в значительной степени определяет практически все свойства бумаги. При повышении влагосодержания увеличивается ее пластичность, а также удлинение до разрыва, заметно повышается сопротивление излому при многократных перегибах листа.

Область положительного влияния увеличения влажности на свойства бумаги крайне узка (всего 2-3%), поэтому увлажнение мелованных видов бумаги свыше 6% даже вредно и способно привести к слипанию листов. Бумага без покрытия при влажности более 8% становится вялой, теряя жесткость при изгибе.

Имеет свои отрицательные последствия и пониженная сухость бумаги. Уменьшение влажности до 4% ведет к повышению хрупкости составляющих ее волокон, снижается прочность бумаги, ее упругость и пластичность. Бумага с пониженной влажностью (ее еще называют пересушенной) склонна к пылению, в том числе и кромок листов при разрезании, а также к накоплению статического электричества, что может вызвать проблемы в процессе переработки.

Влажность печатных оттисков больше всего изменяется в офсетной печати. В листовом «мокром» офсете, использующем увлажнение пробельных элементов печатной формы, за четыре краскопрогона увеличение влажности может достигнуть 1,5-2%.

В ролевых офсетных машинах и печатных машинах глубокой печати с горячей сушкой окончательная влажность бумаги может составлять 4% и менее.

Если влажность будет опускаться ниже 4%, то с бумагой произойдут необратимые процессы ороговения волокон с общим снижением ее механической прочности.

Устройства горячей сушки оттисков вызывают ударную тепловую нагрузку в бумажном полотне, которое нагревается горячим воздухом до температуры 100-140°С, при этом возникают значительные усадочные напряжения, требующие для сохранения целостности бумажного полотна высокой однородности и эластичности бумаги. Кроме того, при ролевой офсетной печати возможно возникновение волнистости кромок. В большей степени этот дефект проявляется при печати на плотной бумаге. Некоторые мелованные виды бумаги в сушильной секции теряют лоск.

Пересушенная бумага будет ломаться в фальцаппаратах. Чтобы этого не произошло, после устройства сушки бумажное полотно подается в секцию охлаждения или электростатического увлажнения, где происходит восстановление влажности до уровня исходной равновесной.

Способность к впитыванию масла определяет в известной степени скорость высыхания оттисков. Ввиду использования, особенно при ролевой печати, термозакрепляющихся красок фактор впитывания уже не играет такой роли при определении склонности оттисков к отмарыванию.

При склейке книжного блока способность к впитыванию оказывает влияние на качество и долговечность склейки.

Для прочного соединения листов необходимо, чтобы клей пропитал бумагу, дабы в максимальной степени произошло их сцепление. Для этого блок рыхлят фрезой, либо поперек корешка книжного (тетрадного) листа делают просечку или перфорацию.

Лучшее качество склейки получается при использовании шероховатой, пухлой бумаги. Однако при этом бумага должна иметь достаточную связанность внутренней структуры.

В противном случае возможно разрушение клеевого соединения с отрывом клея вместе с частью бумажного листа (расслоение его по толщине). Для бумаги со слабой связанностью структуры, например газетной, желательна полная пропитка клеем по толщине.

Для получения качественного клеевого соединения бумага должна в минимальной степени деформироваться при увлажнении клеевым раствором. Снижению таких деформаций способствует придание бумаге водоотталкивающих свойств за счет проклейки для уменьшения проникновения клеевого раствора в структуру. Таким образом, соотношение между степенью пропитки бумаги клеем и ее склонностью к короблению необходимо поддерживать на оптимальном уровне.

При прочих равных условиях минимальная деформация при увлажнении происходит в направлении максимальной ориентации волокон в листе, поэтому в книжном блоке направление преимущественной ориентации волокон должно совпадать с осью корешка.

В случае использования для склейки термопластичных безводных клеев-расплавов проблема деформации листов уменьшается, но на первый план выходит проблема обеспечения адгезии клея и поверхности бумаги для образования прочного клеевого соединения. Решается она за счет использования бумаги с невысокой сомкнутостью поверхности, в которую клей имеет возможность проникнуть. Вследствие недостаточности такого проникновения есть проблемы со склейкой мелованной бумаги. Выход — в привлечении клеев-расплавов, имеющих высокую адгезию к бумаге и обладающих высокой эластичностью в твердом виде.

Но хорошего качества склейки может не хватить для издания длительного срока использования. Чтобы получилось надежное и, главное, долговечное скрепление, важно, чтобы жесткость скрепленных листов на изгиб была по возможности меньше. В этом случае соединение испытывает меньшее усилие на разрыв. На рисунках показаны два случая склейки: бумаги с высокой жесткостью при изгибе (А) и с более низкой жесткостью (Б). При равной силе, переворачивающей листы (F 1 =F 2), в первом случае на место склейки действует существенно более высокий момент силы (М 1 >>М 2).

Именно поэтому, а также для создания условий получения прямого корешка, не деформирующегося при склеивании водным раствором клея, в тетрадных листах направление преимущественной ориентации волокон должно быть параллельно корешку.

Следует отметить, что при уменьшении формата издания жесткость бумаги на изгиб должна также уменьшаться, т. к. при раскрывании и перелистывании такого издания в меньшей степени проявляется гибкость листа и склейка подвергается большим воздействиям.

Характеристики структуры бумаги

Другой группой фундаментальных характеристик бумаги, определяющих ее поведение во многих послепечатных операциях, являются характеристики структуры бумаги и ее деформационные (упруго-пластичные) свойства.

Прежде всего при проведении операций подрезки, подчистки, разрезания оттисков следует учитывать пухлость бумаги.

Для пухлой бумаги, имеющей плотность до 0,6 г/см 3 , точность разрезания оттисков в стопе на гильотинной резательной машине увеличивается при более сильном прижиме стопы прижимным устройством.

Для бумаги, имеющей высокую гладкость поверхности и высокую плотность, прижим стопы следует уменьшить.

С уменьшением высоты стопы точность разрезания увеличивается. Увеличение толщины стопы жесткой бумаги ведет к уменьшению точности реза.

Для обеспечения надлежащего качества разрезания оттисков угол заточки ножа резательной машины должен соответствовать качественным характеристикам разрезаемого материала. Для более плотных материалов угол заточки должен быть больше. Вообще говоря, рекомендуемый угол при одинарной заточке должен быть в пределах 19-230. Чаще используется угол 20-210. При прямолинейной двойной заточке рекомендуемый угол первого участка 240, второго — 200.

Большое значение для процессов фальцовки и биговки имеет способность бумаги деформироваться при сжатии пластически, т. е. без восстановления после снятия нагрузки.

Фальцовка — процесс перегибания листов оттисков — приводит к сильным изменениям структуры листа, связанным как с растяжением внешней фальцуемой поверхности листа (А на рис. 2), так и со сжатием внутренней поверхности (Б на рис. 2). Поэтому лучше фальцуется бумага, которая при достаточном значении удлинения до разрыва, обеспечивающем сохранность на внешней стороне фальца (А), способна к необратимой пластической деформации на внутренней стороне фальца (Б). При высокой упругости бумаги (об этом часто свидетельствует высокая жесткость бумаги на изгиб) фальц плохо формируется — лист пытается распрямиться, вызывая проблемы при формировании тетрадей, их подборке, а также шитье и склейке.

В большей степени благоприятные условия фальцовки создаются при сгибе листа по линии, совпадающей с направлением преимущественной ориентации волокон в бумажном листе (так называемом машинном направлении). В этом случае меньше жесткость бумаги при изгибе и значительнее пластическая (необратимая) деформация листа после сгиба.

При перпендикулярной фальцовке часто наблюдается замятие листа на стыке взаимоперпендикулярных фальцев. Для устранения этой проблемы применяется предварительная биговка места сгиба. Как правило, этот прием используется и при работе с бумагой повышенной массы 1 м 2 (более 150 г). Это позволяет избежать «заломов». Аналогичную роль может играть и перфорация бумаги по линии будущего сгиба.

О влиянии жесткости бумаги при изгибе на долговечность склейки блока листов уже упоминалось. Влияние свойств бумаги на качество фальцовки нужно учитывать также при подготовке и приклейке форзаца.

Однородность бумаги

Однородность бумажного листа и бумажного полотна при ролевой печати — непременное условие не только получения изделия желаемого качества, но и вообще выполнения работы. Особенно это относится к современным ролевым печатным машинам, работающим на скорости около 100 тыс. оттисков в час, в которых для проведения качественной фальцовки требуется стабильность натяжения бумажного полотна, зависящая от его однородности. В ролевой печати определяющим может стать однородность намотки и качество гильзы, на которую наматывается бумага.

Отделочные процессы придания лучшего внешнего вида готовым изделиям, а также повышения их износоустойчивости (припрессовка пленки, ламинирование, лакирование) предъявляют основные требования к однородности обрабатываемого материала. Если шероховатая бумага имеет неравномерный просвет, выражающийся в колебании ее плотности по площади, это приводит к колебаниям шероховатости и пористости. Значит, условия сцепления с наносимыми при ламинировании и припрессовке (кашировании) пленками будут изменяться, что может привести к пятнистому внешнему виду изделия, а возможно, и к отделению пленки от его поверхности.

При лакировании колебания плотности бумаги по площади приведут к различию в восприятии лака поверхностью (более уплотненные участки впитывают меньше) и возникновению пятнистости по глянцу. Чем более гладкая и равномерная по шероховатости покрываемая поверхность, тем лучше результат.

При лакировании бумаги, имеющей пухлую структуру, жидкий лак «проваливается» и улучшения внешнего вида не происходит. Для получения однородного глянцевого покрытия поверхность бумаги должна быть сомкнутой и однородной как по рельефу, так и по плотности.

Для сушки оттисков после лакирования используются мощные сушильные устройства: основанные на сушке горячим воздухом, на инфракрасном или ультрафиолетовом излучении. Для того чтобы вернуть оттиски в нормальные условия после сушки, требуется секция охлаждения.

Важным условием получения качественного покрытия при всех отделочных процессах являются однородность и невысокая (до 6%) влажность обрабатываемой бумаги.

Избыточная влага может, испаряясь при нагревании в процессе отделки, нарушать целостность покрытия, препятствовать хорошему сцеплению с материалом.

Требование однородности бумаги по распределению массы 1 м 2 , которая на малых площадях определяется как равномерность просвета (степень облачности структуры листа бумаги в проходящем свете), должно выполняться для всех видов отделочных процессов, будь то нанесение покрытий, каширование, окраска или механическая обработка в виде различных видов тиснения.

Заключение

Данная статья не охватывает все многообразие отделки печатной продукции, которая кроме рассмотренных операций включает приклейку форзаца, перфорирование, кругление углов блоков, гуммирование, шитье книжных блоков, закраску обреза книжных блоков и т. д. Однако указанные закономерности сохраняются и в процессах здесь не рассмотренных.

Появление новых технологий и материалов в известной мере может нивелировать влияние свойств бумаги на послепечатные операции. В качестве примера могут быть названы новые технологии склейки с использованием подслоев под клеевой слой — «праймеров» или высокочастотной сушки, однако нивелирование происходит лишь до определенной степени, и свойства материалов все же необходимо учитывать.

Журналов в свободном доступе.

На ту же тему:


Качество бумаги и картона характеризуется потребительскими свойствами, показатели которых регламентируются стандартами. Важнейшими из этих свойств являются состав по виду волокнистых полуфабрикатов, масса 1 м 2 , толщина, плотность, гладкость, степень проклейки, зольность, белизна и сорность. Бумага и картон также характеризуются прочностью на разрыв, линейной деформацией при увлажнении и высыхании, прозрачностью, воздухопроницаемостью и другими свойствами.

Состав волокон бумаги. По виду волокнистых полуфабрикатов во многом определяет назначение бумаги в соответствии с приобретенными свойствами. Изменяя композицию (рецептурный состав волокнистых полуфабрикатов) бумаги и картона, им придают заданные свойства. Состав видов волокнистых полуфабрикатов указывают в процентах. Знания направления волокон бумаги также имеют значение при проверке ее качества, хранении, выработке изделий из бумаги. Направление бумаги определяют следующими способами: по внешним признакам, по двум полоскам бумаги, по кругу бумаги, по деформации краев листа при увлажнении, по разрушающему усилию.

Масса 1 м 2 бумаги в основном зависит от видов волокнистых полуфабрикатов, использованных для ее изготовления. Бумага, изготовленная на основе древесной массы, значительно тяжелее бумаги, содержащей целлюлозу или тряпичную полумассу. Этот показатель также характеризует плотность и пористость бумаги. В свою очередь пористость непосредственно влияет на впитывающую способность бумаги, то есть на ее способность воспринимать печатную краску, и вполне может служить характеристикой структуры бумаги.

Определение размеров и косины листа. Косина листа - отклонение формы листа бумаги от прямоугольной. Метод расчета основан на измерении длин диагоналей листа и вычислении косины с учетом разности длин диагоналей. Длину диагоналей листа бумаги (картона) измеряют металлической линейкой или металлической рулеткой. Результат измерения представляют целым числом. Абсолютную косину листа бумаги (картона) К абс в мм. вычисляют по формуле

Кабс = c - d, (1.3.1)

где с и d -- длины диагоналей листа, мм.

Относительную косину листа бумаги (картона) К отн определяют как отношение абсолютной косины к длине большей стороны листа

К отн = К абс / а, (1.3.2)

где а -- длина большей стороны листа, мм.

Степень проклейки имеет важное значение для бумаги, предназначенной для письма, черчения и рисования. Она зависит от количества внесенных в бумажную массу или нанесенных на поверхность бумаги вида и количества проклеивающих веществ. Выражают степень проклейки бумаги максимальной шириной штриха в миллиметрах, при нанесении которого водные красящие составы (чернила, тушь, акварельные краски) не расплываются и не проходят на обратную (сеточную) сторону бумаги. Степень проклейки картона выражают процентным содержанием проклеивающих веществ.

Белизна характеризует оптические свойства бумаги, ее способность диффузно отражать световой поток в коротковолновой части спектра. Она выражается в процентах по отношению к эталону белизны (серно-кислый барий) и зависит от вида использованных волокнистых полуфабрикатов, качества их отбеливания или подцветки. Чем выше белизна, тем легче читать текст, чертежи и графики.

Гладкость характеризуется рельефом поверхности бумаги и зависит от однородности бумажной массы и обработки бумаги на стадии отделки. Гладкость выражается в секундах, в течение которых определенный объем воздуха проходит между бумагой и стеклянной пластинкой при постоянных давлении на бумагу и разряжении, создаваемых вакуум-аппаратом. Так, гладкость писчих бумаг равна 100--150 с, мелованных - 400--600 с. Чем выше гладкость, тем ровнее ложатся на бумагу чернила, пасты, краски и печать.

Толщина бумаги, измеряется в микронах (мкм), определяет как проходимость бумаги в печатной машине, так и потребительские свойства -- в первую очередь прочностные -- готового изделия. При измерении толщины вычисляют еще два важных показателя: плотность и удельный объем бумаги. Все показатели нормируются согласно ГОСТам по каждому виду бумаги и влияют на потребительские свойства конечного продукта.

Пухлость бумаги. Она характеризует степень спрессованности бумаги и очень тесно связана с непрозрачностью: то есть чем пухлее бумага, тем она более непрозрачна при равном граммаже. Пухлость измеряется в кубических сантиметрах на грамм (см 3 /г). Пухлость печатных бумаг колеблется в среднем от 2 см 3 /г (для рыхлых, пористых) до 0,73 см 3 /г (для высокоплотных каландрированных бумаг). На практике это означает, что если брать более пухлую бумагу меньшего граммажа, то при равной непрозрачности в тонне бумаги будет больше листов.

Сорность - характеризует качество бумаги. Для определения сорности используются шаблоны для вырезания образцов размером 250Ч250 мм. Шаблон изготовлен из прозрачной бесцветной пленки с нанесенными на ней черными фигурами различной конфигурации. Схематичное изображение конфигурации соринок

Среднюю сорность выражают средним количеством соринок на обеих сторонах всех испытуемых образцов в пересчете на 1 м 2 поверхности бумаги или картона и считают по формуле

Y = c Ч 8 / n, (1.3.3)

где с - суммарное количество соринок с двух сторон,

n - количество испытанных образцов.

Прочность на разрыв. Она зависит не от прочности отдельных компонентов, а от прочности самой структуры бумаги, которая формируется в процессе бумажного производства. Это свойство характеризуется обычно разрывной длиной в метрах или разрывным усилием в ньютонах. Так, для более мягких типографских бумаг разрывная длина составляет не менее 250 мм, а для жестких офсетных эта величина возрастает уже до 350 мм и выше.

Прочность на излом - характеризует жесткость бумаги. Сущность метода заключается в определении числа двойных перегибов, выдерживаемых полоской бумаги, находящейся под натяжением, при изгибе попеременно в одну и другую стороны на определенный угол до ее разрушения. Прочности на излом при многократных перегибах определяется на приборах Шоппера, Ломаржи, Келер-Молина. Норма для рисовальной бумаги - 40-50, для чертежной - 15-50, чертежной прозрачной - 900 -1500.